sage: H = DirichletGroup(5054)
pari: g = idealstar(,5054,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 2052 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{6}\times C_{342}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{5054}(1445,\cdot)$, $\chi_{5054}(1807,\cdot)$ |
First 32 of 2052 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{5054}(1,\cdot)\) | 5054.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{5054}(3,\cdot)\) | 5054.ck | 342 | no | \(1\) | \(1\) | \(e\left(\frac{113}{171}\right)\) | \(e\left(\frac{43}{342}\right)\) | \(e\left(\frac{55}{171}\right)\) | \(e\left(\frac{7}{57}\right)\) | \(e\left(\frac{37}{171}\right)\) | \(e\left(\frac{269}{342}\right)\) | \(e\left(\frac{7}{342}\right)\) | \(e\left(\frac{115}{171}\right)\) | \(e\left(\frac{43}{171}\right)\) | \(e\left(\frac{56}{57}\right)\) |
\(\chi_{5054}(5,\cdot)\) | 5054.ce | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{43}{342}\right)\) | \(e\left(\frac{187}{342}\right)\) | \(e\left(\frac{43}{171}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{233}{342}\right)\) | \(e\left(\frac{115}{171}\right)\) | \(e\left(\frac{49}{342}\right)\) | \(e\left(\frac{121}{171}\right)\) | \(e\left(\frac{16}{171}\right)\) | \(e\left(\frac{43}{114}\right)\) |
\(\chi_{5054}(9,\cdot)\) | 5054.cb | 171 | no | \(1\) | \(1\) | \(e\left(\frac{55}{171}\right)\) | \(e\left(\frac{43}{171}\right)\) | \(e\left(\frac{110}{171}\right)\) | \(e\left(\frac{14}{57}\right)\) | \(e\left(\frac{74}{171}\right)\) | \(e\left(\frac{98}{171}\right)\) | \(e\left(\frac{7}{171}\right)\) | \(e\left(\frac{59}{171}\right)\) | \(e\left(\frac{86}{171}\right)\) | \(e\left(\frac{55}{57}\right)\) |
\(\chi_{5054}(11,\cdot)\) | 5054.bl | 57 | no | \(1\) | \(1\) | \(e\left(\frac{7}{57}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{14}{57}\right)\) | \(e\left(\frac{5}{57}\right)\) | \(e\left(\frac{7}{57}\right)\) | \(e\left(\frac{37}{57}\right)\) | \(e\left(\frac{4}{57}\right)\) | \(e\left(\frac{50}{57}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{7}{19}\right)\) |
\(\chi_{5054}(13,\cdot)\) | 5054.cl | 342 | no | \(1\) | \(1\) | \(e\left(\frac{37}{171}\right)\) | \(e\left(\frac{233}{342}\right)\) | \(e\left(\frac{74}{171}\right)\) | \(e\left(\frac{7}{57}\right)\) | \(e\left(\frac{170}{171}\right)\) | \(e\left(\frac{307}{342}\right)\) | \(e\left(\frac{311}{342}\right)\) | \(e\left(\frac{77}{171}\right)\) | \(e\left(\frac{62}{171}\right)\) | \(e\left(\frac{37}{57}\right)\) |
\(\chi_{5054}(15,\cdot)\) | 5054.ch | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{269}{342}\right)\) | \(e\left(\frac{115}{171}\right)\) | \(e\left(\frac{98}{171}\right)\) | \(e\left(\frac{37}{57}\right)\) | \(e\left(\frac{307}{342}\right)\) | \(e\left(\frac{157}{342}\right)\) | \(e\left(\frac{28}{171}\right)\) | \(e\left(\frac{65}{171}\right)\) | \(e\left(\frac{59}{171}\right)\) | \(e\left(\frac{41}{114}\right)\) |
\(\chi_{5054}(17,\cdot)\) | 5054.cj | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{342}\right)\) | \(e\left(\frac{49}{342}\right)\) | \(e\left(\frac{7}{171}\right)\) | \(e\left(\frac{4}{57}\right)\) | \(e\left(\frac{311}{342}\right)\) | \(e\left(\frac{28}{171}\right)\) | \(e\left(\frac{175}{342}\right)\) | \(e\left(\frac{139}{171}\right)\) | \(e\left(\frac{49}{171}\right)\) | \(e\left(\frac{7}{114}\right)\) |
\(\chi_{5054}(23,\cdot)\) | 5054.cb | 171 | no | \(1\) | \(1\) | \(e\left(\frac{115}{171}\right)\) | \(e\left(\frac{121}{171}\right)\) | \(e\left(\frac{59}{171}\right)\) | \(e\left(\frac{50}{57}\right)\) | \(e\left(\frac{77}{171}\right)\) | \(e\left(\frac{65}{171}\right)\) | \(e\left(\frac{139}{171}\right)\) | \(e\left(\frac{170}{171}\right)\) | \(e\left(\frac{71}{171}\right)\) | \(e\left(\frac{1}{57}\right)\) |
\(\chi_{5054}(25,\cdot)\) | 5054.ca | 171 | no | \(1\) | \(1\) | \(e\left(\frac{43}{171}\right)\) | \(e\left(\frac{16}{171}\right)\) | \(e\left(\frac{86}{171}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{62}{171}\right)\) | \(e\left(\frac{59}{171}\right)\) | \(e\left(\frac{49}{171}\right)\) | \(e\left(\frac{71}{171}\right)\) | \(e\left(\frac{32}{171}\right)\) | \(e\left(\frac{43}{57}\right)\) |
\(\chi_{5054}(27,\cdot)\) | 5054.bv | 114 | no | \(1\) | \(1\) | \(e\left(\frac{56}{57}\right)\) | \(e\left(\frac{43}{114}\right)\) | \(e\left(\frac{55}{57}\right)\) | \(e\left(\frac{7}{19}\right)\) | \(e\left(\frac{37}{57}\right)\) | \(e\left(\frac{41}{114}\right)\) | \(e\left(\frac{7}{114}\right)\) | \(e\left(\frac{1}{57}\right)\) | \(e\left(\frac{43}{57}\right)\) | \(e\left(\frac{18}{19}\right)\) |
\(\chi_{5054}(29,\cdot)\) | 5054.ch | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{311}{342}\right)\) | \(e\left(\frac{91}{171}\right)\) | \(e\left(\frac{140}{171}\right)\) | \(e\left(\frac{4}{57}\right)\) | \(e\left(\frac{121}{342}\right)\) | \(e\left(\frac{151}{342}\right)\) | \(e\left(\frac{40}{171}\right)\) | \(e\left(\frac{44}{171}\right)\) | \(e\left(\frac{11}{171}\right)\) | \(e\left(\frac{83}{114}\right)\) |
\(\chi_{5054}(31,\cdot)\) | 5054.bo | 114 | no | \(1\) | \(1\) | \(e\left(\frac{6}{19}\right)\) | \(e\left(\frac{43}{114}\right)\) | \(e\left(\frac{12}{19}\right)\) | \(e\left(\frac{2}{57}\right)\) | \(e\left(\frac{56}{57}\right)\) | \(e\left(\frac{79}{114}\right)\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{43}{57}\right)\) | \(e\left(\frac{18}{19}\right)\) |
\(\chi_{5054}(33,\cdot)\) | 5054.cf | 342 | no | \(1\) | \(1\) | \(e\left(\frac{134}{171}\right)\) | \(e\left(\frac{223}{342}\right)\) | \(e\left(\frac{97}{171}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{58}{171}\right)\) | \(e\left(\frac{149}{342}\right)\) | \(e\left(\frac{31}{342}\right)\) | \(e\left(\frac{94}{171}\right)\) | \(e\left(\frac{52}{171}\right)\) | \(e\left(\frac{20}{57}\right)\) |
\(\chi_{5054}(37,\cdot)\) | 5054.bt | 114 | no | \(-1\) | \(1\) | \(e\left(\frac{71}{114}\right)\) | \(e\left(\frac{11}{57}\right)\) | \(e\left(\frac{14}{57}\right)\) | \(e\left(\frac{43}{57}\right)\) | \(e\left(\frac{11}{38}\right)\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{4}{57}\right)\) | \(e\left(\frac{50}{57}\right)\) | \(e\left(\frac{22}{57}\right)\) | \(e\left(\frac{33}{38}\right)\) |
\(\chi_{5054}(39,\cdot)\) | 5054.bn | 57 | no | \(1\) | \(1\) | \(e\left(\frac{50}{57}\right)\) | \(e\left(\frac{46}{57}\right)\) | \(e\left(\frac{43}{57}\right)\) | \(e\left(\frac{14}{57}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{53}{57}\right)\) | \(e\left(\frac{7}{57}\right)\) | \(e\left(\frac{35}{57}\right)\) | \(e\left(\frac{12}{19}\right)\) |
\(\chi_{5054}(41,\cdot)\) | 5054.cl | 342 | no | \(1\) | \(1\) | \(e\left(\frac{125}{171}\right)\) | \(e\left(\frac{325}{342}\right)\) | \(e\left(\frac{79}{171}\right)\) | \(e\left(\frac{56}{57}\right)\) | \(e\left(\frac{163}{171}\right)\) | \(e\left(\frac{233}{342}\right)\) | \(e\left(\frac{265}{342}\right)\) | \(e\left(\frac{103}{171}\right)\) | \(e\left(\frac{154}{171}\right)\) | \(e\left(\frac{11}{57}\right)\) |
\(\chi_{5054}(43,\cdot)\) | 5054.cc | 171 | no | \(1\) | \(1\) | \(e\left(\frac{23}{171}\right)\) | \(e\left(\frac{47}{171}\right)\) | \(e\left(\frac{46}{171}\right)\) | \(e\left(\frac{29}{57}\right)\) | \(e\left(\frac{4}{171}\right)\) | \(e\left(\frac{70}{171}\right)\) | \(e\left(\frac{62}{171}\right)\) | \(e\left(\frac{34}{171}\right)\) | \(e\left(\frac{94}{171}\right)\) | \(e\left(\frac{23}{57}\right)\) |
\(\chi_{5054}(45,\cdot)\) | 5054.by | 114 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{38}\right)\) | \(e\left(\frac{91}{114}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{44}{57}\right)\) | \(e\left(\frac{13}{114}\right)\) | \(e\left(\frac{14}{57}\right)\) | \(e\left(\frac{7}{38}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{34}{57}\right)\) | \(e\left(\frac{13}{38}\right)\) |
\(\chi_{5054}(47,\cdot)\) | 5054.cj | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{137}{342}\right)\) | \(e\left(\frac{275}{342}\right)\) | \(e\left(\frac{137}{171}\right)\) | \(e\left(\frac{5}{57}\right)\) | \(e\left(\frac{175}{342}\right)\) | \(e\left(\frac{35}{171}\right)\) | \(e\left(\frac{5}{342}\right)\) | \(e\left(\frac{131}{171}\right)\) | \(e\left(\frac{104}{171}\right)\) | \(e\left(\frac{23}{114}\right)\) |
\(\chi_{5054}(51,\cdot)\) | 5054.ci | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{233}{342}\right)\) | \(e\left(\frac{46}{171}\right)\) | \(e\left(\frac{62}{171}\right)\) | \(e\left(\frac{11}{57}\right)\) | \(e\left(\frac{43}{342}\right)\) | \(e\left(\frac{325}{342}\right)\) | \(e\left(\frac{91}{171}\right)\) | \(e\left(\frac{83}{171}\right)\) | \(e\left(\frac{92}{171}\right)\) | \(e\left(\frac{5}{114}\right)\) |
\(\chi_{5054}(53,\cdot)\) | 5054.cd | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{137}{342}\right)\) | \(e\left(\frac{109}{171}\right)\) | \(e\left(\frac{137}{171}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{289}{342}\right)\) | \(e\left(\frac{13}{342}\right)\) | \(e\left(\frac{88}{171}\right)\) | \(e\left(\frac{131}{171}\right)\) | \(e\left(\frac{47}{171}\right)\) | \(e\left(\frac{23}{114}\right)\) |
\(\chi_{5054}(55,\cdot)\) | 5054.cg | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{85}{342}\right)\) | \(e\left(\frac{25}{342}\right)\) | \(e\left(\frac{85}{171}\right)\) | \(e\left(\frac{35}{57}\right)\) | \(e\left(\frac{275}{342}\right)\) | \(e\left(\frac{55}{171}\right)\) | \(e\left(\frac{73}{342}\right)\) | \(e\left(\frac{100}{171}\right)\) | \(e\left(\frac{25}{171}\right)\) | \(e\left(\frac{85}{114}\right)\) |
\(\chi_{5054}(59,\cdot)\) | 5054.ck | 342 | no | \(1\) | \(1\) | \(e\left(\frac{125}{171}\right)\) | \(e\left(\frac{211}{342}\right)\) | \(e\left(\frac{79}{171}\right)\) | \(e\left(\frac{37}{57}\right)\) | \(e\left(\frac{106}{171}\right)\) | \(e\left(\frac{119}{342}\right)\) | \(e\left(\frac{265}{342}\right)\) | \(e\left(\frac{103}{171}\right)\) | \(e\left(\frac{40}{171}\right)\) | \(e\left(\frac{11}{57}\right)\) |
\(\chi_{5054}(61,\cdot)\) | 5054.cj | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{77}{342}\right)\) | \(e\left(\frac{197}{342}\right)\) | \(e\left(\frac{77}{171}\right)\) | \(e\left(\frac{44}{57}\right)\) | \(e\left(\frac{1}{342}\right)\) | \(e\left(\frac{137}{171}\right)\) | \(e\left(\frac{215}{342}\right)\) | \(e\left(\frac{161}{171}\right)\) | \(e\left(\frac{26}{171}\right)\) | \(e\left(\frac{77}{114}\right)\) |
\(\chi_{5054}(65,\cdot)\) | 5054.bz | 114 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{38}\right)\) | \(e\left(\frac{13}{57}\right)\) | \(e\left(\frac{13}{19}\right)\) | \(e\left(\frac{37}{57}\right)\) | \(e\left(\frac{77}{114}\right)\) | \(e\left(\frac{65}{114}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{3}{19}\right)\) | \(e\left(\frac{26}{57}\right)\) | \(e\left(\frac{1}{38}\right)\) |
\(\chi_{5054}(67,\cdot)\) | 5054.cd | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{341}{342}\right)\) | \(e\left(\frac{139}{171}\right)\) | \(e\left(\frac{170}{171}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{265}{342}\right)\) | \(e\left(\frac{277}{342}\right)\) | \(e\left(\frac{73}{171}\right)\) | \(e\left(\frac{29}{171}\right)\) | \(e\left(\frac{107}{171}\right)\) | \(e\left(\frac{113}{114}\right)\) |
\(\chi_{5054}(69,\cdot)\) | 5054.m | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) |
\(\chi_{5054}(71,\cdot)\) | 5054.ch | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{37}{342}\right)\) | \(e\left(\frac{101}{171}\right)\) | \(e\left(\frac{37}{171}\right)\) | \(e\left(\frac{32}{57}\right)\) | \(e\left(\frac{341}{342}\right)\) | \(e\left(\frac{239}{342}\right)\) | \(e\left(\frac{35}{171}\right)\) | \(e\left(\frac{124}{171}\right)\) | \(e\left(\frac{31}{171}\right)\) | \(e\left(\frac{37}{114}\right)\) |
\(\chi_{5054}(73,\cdot)\) | 5054.cj | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{235}{342}\right)\) | \(e\left(\frac{277}{342}\right)\) | \(e\left(\frac{64}{171}\right)\) | \(e\left(\frac{4}{57}\right)\) | \(e\left(\frac{83}{342}\right)\) | \(e\left(\frac{85}{171}\right)\) | \(e\left(\frac{61}{342}\right)\) | \(e\left(\frac{25}{171}\right)\) | \(e\left(\frac{106}{171}\right)\) | \(e\left(\frac{7}{114}\right)\) |
\(\chi_{5054}(75,\cdot)\) | 5054.bw | 114 | no | \(1\) | \(1\) | \(e\left(\frac{52}{57}\right)\) | \(e\left(\frac{25}{114}\right)\) | \(e\left(\frac{47}{57}\right)\) | \(e\left(\frac{10}{57}\right)\) | \(e\left(\frac{11}{19}\right)\) | \(e\left(\frac{5}{38}\right)\) | \(e\left(\frac{35}{114}\right)\) | \(e\left(\frac{5}{57}\right)\) | \(e\left(\frac{25}{57}\right)\) | \(e\left(\frac{14}{19}\right)\) |
\(\chi_{5054}(79,\cdot)\) | 5054.cd | 342 | no | \(-1\) | \(1\) | \(e\left(\frac{103}{342}\right)\) | \(e\left(\frac{47}{171}\right)\) | \(e\left(\frac{103}{171}\right)\) | \(e\left(\frac{16}{19}\right)\) | \(e\left(\frac{65}{342}\right)\) | \(e\left(\frac{197}{342}\right)\) | \(e\left(\frac{5}{171}\right)\) | \(e\left(\frac{91}{171}\right)\) | \(e\left(\frac{94}{171}\right)\) | \(e\left(\frac{103}{114}\right)\) |