Properties

 Label 4830.1517 Modulus $4830$ Conductor $2415$ Order $12$ Real no Primitive no Minimal yes Parity even

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(4830, base_ring=CyclotomicField(12))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([6,3,10,6]))

pari: [g,chi] = znchar(Mod(1517,4830))

Basic properties

 Modulus: $$4830$$ Conductor: $$2415$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$12$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{2415}(1517,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

Galois orbit 4830.bs

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Related number fields

 Field of values: $$\Q(\zeta_{12})$$ Fixed field: 12.12.59539472632672035486328125.1

Values on generators

$$(3221,967,2761,1891)$$ → $$(-1,i,e\left(\frac{5}{6}\right),-1)$$

Values

 $$-1$$ $$1$$ $$11$$ $$13$$ $$17$$ $$19$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$47$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$i$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$1$$ $$i$$ $$e\left(\frac{11}{12}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 4830 }(1517,a) \;$$ at $$\;a =$$ e.g. 2