from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(483, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([0,11,51]))
pari: [g,chi] = znchar(Mod(199,483))
Basic properties
Modulus: | \(483\) | |
Conductor: | \(161\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(66\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{161}(38,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 483.bf
\(\chi_{483}(10,\cdot)\) \(\chi_{483}(19,\cdot)\) \(\chi_{483}(40,\cdot)\) \(\chi_{483}(61,\cdot)\) \(\chi_{483}(103,\cdot)\) \(\chi_{483}(136,\cdot)\) \(\chi_{483}(145,\cdot)\) \(\chi_{483}(157,\cdot)\) \(\chi_{483}(166,\cdot)\) \(\chi_{483}(178,\cdot)\) \(\chi_{483}(199,\cdot)\) \(\chi_{483}(241,\cdot)\) \(\chi_{483}(250,\cdot)\) \(\chi_{483}(283,\cdot)\) \(\chi_{483}(304,\cdot)\) \(\chi_{483}(313,\cdot)\) \(\chi_{483}(355,\cdot)\) \(\chi_{483}(388,\cdot)\) \(\chi_{483}(451,\cdot)\) \(\chi_{483}(481,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | Number field defined by a degree 66 polynomial |
Values on generators
\((323,346,442)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{17}{22}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 483 }(199, a) \) | \(1\) | \(1\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{14}{33}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)