sage: H = DirichletGroup(4760)
pari: g = idealstar(,4760,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 1536 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{48}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{4760}(1191,\cdot)$, $\chi_{4760}(2381,\cdot)$, $\chi_{4760}(2857,\cdot)$, $\chi_{4760}(1361,\cdot)$, $\chi_{4760}(3641,\cdot)$ |
First 32 of 1536 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) | \(33\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{4760}(1,\cdot)\) | 4760.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{4760}(3,\cdot)\) | 4760.jx | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(-1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{4760}(9,\cdot)\) | 4760.jt | 24 | no | \(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{4760}(11,\cdot)\) | 4760.kq | 48 | no | \(1\) | \(1\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(i\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{4760}(13,\cdot)\) | 4760.bn | 4 | yes | \(1\) | \(1\) | \(-1\) | \(1\) | \(i\) | \(i\) | \(1\) | \(1\) | \(-1\) | \(i\) | \(-i\) | \(-i\) |
\(\chi_{4760}(19,\cdot)\) | 4760.jp | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{4760}(23,\cdot)\) | 4760.kv | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{4760}(27,\cdot)\) | 4760.ho | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(-i\) |
\(\chi_{4760}(29,\cdot)\) | 4760.ia | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(1\) |
\(\chi_{4760}(31,\cdot)\) | 4760.ke | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(-i\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{4760}(33,\cdot)\) | 4760.gw | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{4760}(37,\cdot)\) | 4760.kd | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(-1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{4760}(39,\cdot)\) | 4760.kl | 48 | no | \(1\) | \(1\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(-i\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{4760}(41,\cdot)\) | 4760.ib | 16 | no | \(1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(1\) |
\(\chi_{4760}(43,\cdot)\) | 4760.et | 8 | no | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) |
\(\chi_{4760}(47,\cdot)\) | 4760.fp | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{4760}(53,\cdot)\) | 4760.jb | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{4760}(57,\cdot)\) | 4760.hp | 16 | no | \(1\) | \(1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) |
\(\chi_{4760}(59,\cdot)\) | 4760.jp | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{4760}(61,\cdot)\) | 4760.kg | 48 | no | \(1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(-i\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{4760}(67,\cdot)\) | 4760.gz | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{4760}(69,\cdot)\) | 4760.d | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) |
\(\chi_{4760}(71,\cdot)\) | 4760.hz | 16 | no | \(1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-1\) |
\(\chi_{4760}(73,\cdot)\) | 4760.lb | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{4760}(79,\cdot)\) | 4760.kl | 48 | no | \(1\) | \(1\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(i\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{4760}(81,\cdot)\) | 4760.gq | 12 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{4760}(83,\cdot)\) | 4760.fd | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) |
\(\chi_{4760}(87,\cdot)\) | 4760.jj | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{4760}(89,\cdot)\) | 4760.gm | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{4760}(93,\cdot)\) | 4760.jm | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{4760}(97,\cdot)\) | 4760.hq | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-i\) |
\(\chi_{4760}(99,\cdot)\) | 4760.ie | 16 | no | \(1\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(1\) |