sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4729, base_ring=CyclotomicField(788))
M = H._module
chi = DirichletCharacter(H, M([109]))
pari:[g,chi] = znchar(Mod(48,4729))
Modulus: | \(4729\) | |
Conductor: | \(4729\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(788\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4729}(2,\cdot)\)
\(\chi_{4729}(3,\cdot)\)
\(\chi_{4729}(8,\cdot)\)
\(\chi_{4729}(12,\cdot)\)
\(\chi_{4729}(18,\cdot)\)
\(\chi_{4729}(27,\cdot)\)
\(\chi_{4729}(32,\cdot)\)
\(\chi_{4729}(48,\cdot)\)
\(\chi_{4729}(72,\cdot)\)
\(\chi_{4729}(108,\cdot)\)
\(\chi_{4729}(121,\cdot)\)
\(\chi_{4729}(125,\cdot)\)
\(\chi_{4729}(127,\cdot)\)
\(\chi_{4729}(128,\cdot)\)
\(\chi_{4729}(157,\cdot)\)
\(\chi_{4729}(162,\cdot)\)
\(\chi_{4729}(175,\cdot)\)
\(\chi_{4729}(192,\cdot)\)
\(\chi_{4729}(211,\cdot)\)
\(\chi_{4729}(227,\cdot)\)
\(\chi_{4729}(229,\cdot)\)
\(\chi_{4729}(243,\cdot)\)
\(\chi_{4729}(245,\cdot)\)
\(\chi_{4729}(288,\cdot)\)
\(\chi_{4729}(317,\cdot)\)
\(\chi_{4729}(335,\cdot)\)
\(\chi_{4729}(341,\cdot)\)
\(\chi_{4729}(343,\cdot)\)
\(\chi_{4729}(367,\cdot)\)
\(\chi_{4729}(373,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(17\) → \(e\left(\frac{109}{788}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 4729 }(48, a) \) |
\(1\) | \(1\) | \(e\left(\frac{389}{394}\right)\) | \(e\left(\frac{203}{394}\right)\) | \(e\left(\frac{192}{197}\right)\) | \(e\left(\frac{283}{394}\right)\) | \(e\left(\frac{99}{197}\right)\) | \(e\left(\frac{391}{394}\right)\) | \(e\left(\frac{379}{394}\right)\) | \(e\left(\frac{6}{197}\right)\) | \(e\left(\frac{139}{197}\right)\) | \(e\left(\frac{755}{788}\right)\) |
sage:chi.jacobi_sum(n)