sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4729, base_ring=CyclotomicField(394))
M = H._module
chi = DirichletCharacter(H, M([129]))
pari:[g,chi] = znchar(Mod(254,4729))
| Modulus: | \(4729\) | |
| Conductor: | \(4729\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(394\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4729}(4,\cdot)\)
\(\chi_{4729}(6,\cdot)\)
\(\chi_{4729}(9,\cdot)\)
\(\chi_{4729}(64,\cdot)\)
\(\chi_{4729}(96,\cdot)\)
\(\chi_{4729}(144,\cdot)\)
\(\chi_{4729}(197,\cdot)\)
\(\chi_{4729}(216,\cdot)\)
\(\chi_{4729}(242,\cdot)\)
\(\chi_{4729}(254,\cdot)\)
\(\chi_{4729}(324,\cdot)\)
\(\chi_{4729}(350,\cdot)\)
\(\chi_{4729}(355,\cdot)\)
\(\chi_{4729}(363,\cdot)\)
\(\chi_{4729}(381,\cdot)\)
\(\chi_{4729}(413,\cdot)\)
\(\chi_{4729}(422,\cdot)\)
\(\chi_{4729}(451,\cdot)\)
\(\chi_{4729}(454,\cdot)\)
\(\chi_{4729}(455,\cdot)\)
\(\chi_{4729}(458,\cdot)\)
\(\chi_{4729}(475,\cdot)\)
\(\chi_{4729}(486,\cdot)\)
\(\chi_{4729}(525,\cdot)\)
\(\chi_{4729}(607,\cdot)\)
\(\chi_{4729}(613,\cdot)\)
\(\chi_{4729}(633,\cdot)\)
\(\chi_{4729}(634,\cdot)\)
\(\chi_{4729}(643,\cdot)\)
\(\chi_{4729}(670,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(17\) → \(e\left(\frac{129}{394}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 4729 }(254, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{197}\right)\) | \(e\left(\frac{130}{197}\right)\) | \(e\left(\frac{46}{197}\right)\) | \(e\left(\frac{156}{197}\right)\) | \(e\left(\frac{153}{197}\right)\) | \(e\left(\frac{132}{197}\right)\) | \(e\left(\frac{69}{197}\right)\) | \(e\left(\frac{63}{197}\right)\) | \(e\left(\frac{179}{197}\right)\) | \(e\left(\frac{73}{394}\right)\) |
sage:chi.jacobi_sum(n)