sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4729, base_ring=CyclotomicField(1182))
M = H._module
chi = DirichletCharacter(H, M([224]))
pari:[g,chi] = znchar(Mod(150,4729))
| Modulus: | \(4729\) | |
| Conductor: | \(4729\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(591\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4729}(14,\cdot)\)
\(\chi_{4729}(19,\cdot)\)
\(\chi_{4729}(21,\cdot)\)
\(\chi_{4729}(35,\cdot)\)
\(\chi_{4729}(37,\cdot)\)
\(\chi_{4729}(40,\cdot)\)
\(\chi_{4729}(52,\cdot)\)
\(\chi_{4729}(60,\cdot)\)
\(\chi_{4729}(67,\cdot)\)
\(\chi_{4729}(78,\cdot)\)
\(\chi_{4729}(83,\cdot)\)
\(\chi_{4729}(90,\cdot)\)
\(\chi_{4729}(100,\cdot)\)
\(\chi_{4729}(117,\cdot)\)
\(\chi_{4729}(118,\cdot)\)
\(\chi_{4729}(130,\cdot)\)
\(\chi_{4729}(131,\cdot)\)
\(\chi_{4729}(135,\cdot)\)
\(\chi_{4729}(150,\cdot)\)
\(\chi_{4729}(169,\cdot)\)
\(\chi_{4729}(177,\cdot)\)
\(\chi_{4729}(187,\cdot)\)
\(\chi_{4729}(193,\cdot)\)
\(\chi_{4729}(195,\cdot)\)
\(\chi_{4729}(196,\cdot)\)
\(\chi_{4729}(224,\cdot)\)
\(\chi_{4729}(225,\cdot)\)
\(\chi_{4729}(266,\cdot)\)
\(\chi_{4729}(294,\cdot)\)
\(\chi_{4729}(304,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(17\) → \(e\left(\frac{112}{591}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 4729 }(150, a) \) |
\(1\) | \(1\) | \(e\left(\frac{52}{197}\right)\) | \(e\left(\frac{174}{197}\right)\) | \(e\left(\frac{104}{197}\right)\) | \(e\left(\frac{193}{591}\right)\) | \(e\left(\frac{29}{197}\right)\) | \(e\left(\frac{133}{591}\right)\) | \(e\left(\frac{156}{197}\right)\) | \(e\left(\frac{151}{197}\right)\) | \(e\left(\frac{349}{591}\right)\) | \(e\left(\frac{14}{197}\right)\) |
sage:chi.jacobi_sum(n)