Properties

Label 4729.128
Modulus $4729$
Conductor $4729$
Order $788$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4729, base_ring=CyclotomicField(788))
 
M = H._module
 
chi = DirichletCharacter(H, M([371]))
 
pari: [g,chi] = znchar(Mod(128,4729))
 

Basic properties

Modulus: \(4729\)
Conductor: \(4729\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(788\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4729.l

\(\chi_{4729}(2,\cdot)\) \(\chi_{4729}(3,\cdot)\) \(\chi_{4729}(8,\cdot)\) \(\chi_{4729}(12,\cdot)\) \(\chi_{4729}(18,\cdot)\) \(\chi_{4729}(27,\cdot)\) \(\chi_{4729}(32,\cdot)\) \(\chi_{4729}(48,\cdot)\) \(\chi_{4729}(72,\cdot)\) \(\chi_{4729}(108,\cdot)\) \(\chi_{4729}(121,\cdot)\) \(\chi_{4729}(125,\cdot)\) \(\chi_{4729}(127,\cdot)\) \(\chi_{4729}(128,\cdot)\) \(\chi_{4729}(157,\cdot)\) \(\chi_{4729}(162,\cdot)\) \(\chi_{4729}(175,\cdot)\) \(\chi_{4729}(192,\cdot)\) \(\chi_{4729}(211,\cdot)\) \(\chi_{4729}(227,\cdot)\) \(\chi_{4729}(229,\cdot)\) \(\chi_{4729}(243,\cdot)\) \(\chi_{4729}(245,\cdot)\) \(\chi_{4729}(288,\cdot)\) \(\chi_{4729}(317,\cdot)\) \(\chi_{4729}(335,\cdot)\) \(\chi_{4729}(341,\cdot)\) \(\chi_{4729}(343,\cdot)\) \(\chi_{4729}(367,\cdot)\) \(\chi_{4729}(373,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{788})$
Fixed field: Number field defined by a degree 788 polynomial (not computed)

Values on generators

\(17\) → \(e\left(\frac{371}{788}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 4729 }(128, a) \) \(1\)\(1\)\(e\left(\frac{283}{394}\right)\)\(e\left(\frac{15}{394}\right)\)\(e\left(\frac{86}{197}\right)\)\(e\left(\frac{215}{394}\right)\)\(e\left(\frac{149}{197}\right)\)\(e\left(\frac{91}{394}\right)\)\(e\left(\frac{61}{394}\right)\)\(e\left(\frac{15}{197}\right)\)\(e\left(\frac{52}{197}\right)\)\(e\left(\frac{213}{788}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4729 }(128,a) \;\) at \(\;a = \) e.g. 2