# Properties

 Label 47.34 Modulus $47$ Conductor $47$ Order $23$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(47, base_ring=CyclotomicField(46))

M = H._module

chi = DirichletCharacter(H, M([34]))

pari: [g,chi] = znchar(Mod(34,47))

## Basic properties

 Modulus: $$47$$ Conductor: $$47$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$23$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 47.c

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{23})$$ Fixed field: Number field defined by a degree 23 polynomial

## Values on generators

$$5$$ → $$e\left(\frac{17}{23}\right)$$

## First values

 $$a$$ $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$7$$ $$8$$ $$9$$ $$10$$ $$11$$ $$\chi_{ 47 }(34, a)$$ $$1$$ $$1$$ $$e\left(\frac{7}{23}\right)$$ $$e\left(\frac{18}{23}\right)$$ $$e\left(\frac{14}{23}\right)$$ $$e\left(\frac{17}{23}\right)$$ $$e\left(\frac{2}{23}\right)$$ $$e\left(\frac{15}{23}\right)$$ $$e\left(\frac{21}{23}\right)$$ $$e\left(\frac{13}{23}\right)$$ $$e\left(\frac{1}{23}\right)$$ $$e\left(\frac{4}{23}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 47 }(34,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 47 }(34,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 47 }(34,·),\chi_{ 47 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 47 }(34,·)) \;$$ at $$\; a,b =$$ e.g. 1,2