sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(469, base_ring=CyclotomicField(66))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([22,24]))
pari: [g,chi] = znchar(Mod(282,469))
Basic properties
Modulus: | \(469\) | |
Conductor: | \(469\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(33\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 469.ba
\(\chi_{469}(9,\cdot)\) \(\chi_{469}(25,\cdot)\) \(\chi_{469}(81,\cdot)\) \(\chi_{469}(107,\cdot)\) \(\chi_{469}(149,\cdot)\) \(\chi_{469}(156,\cdot)\) \(\chi_{469}(158,\cdot)\) \(\chi_{469}(193,\cdot)\) \(\chi_{469}(198,\cdot)\) \(\chi_{469}(226,\cdot)\) \(\chi_{469}(263,\cdot)\) \(\chi_{469}(277,\cdot)\) \(\chi_{469}(282,\cdot)\) \(\chi_{469}(359,\cdot)\) \(\chi_{469}(375,\cdot)\) \(\chi_{469}(394,\cdot)\) \(\chi_{469}(417,\cdot)\) \(\chi_{469}(424,\cdot)\) \(\chi_{469}(464,\cdot)\) \(\chi_{469}(466,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | 33.33.23681050358190252966666038984115482490423545779778728084912954382239302601.1 |
Values on generators
\((269,337)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{4}{11}\right))\)
Values
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\(1\) | \(1\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{2}{33}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{19}{33}\right)\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{469}(282,\cdot)) = \sum_{r\in \Z/469\Z} \chi_{469}(282,r) e\left(\frac{2r}{469}\right) = 20.3062193651+7.5271146595i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{469}(282,\cdot),\chi_{469}(1,\cdot)) = \sum_{r\in \Z/469\Z} \chi_{469}(282,r) \chi_{469}(1,1-r) = 1 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{469}(282,·))
= \sum_{r \in \Z/469\Z}
\chi_{469}(282,r) e\left(\frac{1 r + 2 r^{-1}}{469}\right)
= 25.422316378+2.4275368815i \)