Properties

Label 4641.na
Modulus $4641$
Conductor $663$
Order $48$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4641, base_ring=CyclotomicField(48)) M = H._module chi = DirichletCharacter(H, M([24,0,40,27])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(218,4641)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4641\)
Conductor: \(663\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(48\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 663.cs
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(16\) \(19\) \(20\) \(22\)
\(\chi_{4641}(218,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{23}{48}\right)\)
\(\chi_{4641}(1499,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{31}{48}\right)\)
\(\chi_{4641}(1856,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{47}{48}\right)\)
\(\chi_{4641}(2045,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{43}{48}\right)\)
\(\chi_{4641}(2318,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{1}{48}\right)\)
\(\chi_{4641}(2402,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{11}{48}\right)\)
\(\chi_{4641}(2591,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{37}{48}\right)\)
\(\chi_{4641}(2675,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{17}{48}\right)\)
\(\chi_{4641}(2948,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{5}{48}\right)\)
\(\chi_{4641}(3410,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{13}{48}\right)\)
\(\chi_{4641}(3683,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{25}{48}\right)\)
\(\chi_{4641}(3767,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{29}{48}\right)\)
\(\chi_{4641}(3956,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{19}{48}\right)\)
\(\chi_{4641}(4040,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{41}{48}\right)\)
\(\chi_{4641}(4313,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{35}{48}\right)\)
\(\chi_{4641}(4502,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{7}{48}\right)\)