sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4620, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,10,15,0,16]))
pari:[g,chi] = znchar(Mod(113,4620))
\(\chi_{4620}(113,\cdot)\)
\(\chi_{4620}(533,\cdot)\)
\(\chi_{4620}(1037,\cdot)\)
\(\chi_{4620}(1373,\cdot)\)
\(\chi_{4620}(1457,\cdot)\)
\(\chi_{4620}(2297,\cdot)\)
\(\chi_{4620}(2633,\cdot)\)
\(\chi_{4620}(3557,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2311,1541,3697,661,2521)\) → \((1,-1,-i,1,e\left(\frac{4}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
\( \chi_{ 4620 }(113, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(-i\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(i\) | \(e\left(\frac{13}{20}\right)\) |
sage:chi.jacobi_sum(n)