Properties

Label 4600.cz
Modulus $4600$
Conductor $4600$
Order $110$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4600, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,55,99,75]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(19,4600))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4600\)
Conductor: \(4600\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(27\) \(29\)
\(\chi_{4600}(19,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{63}{110}\right)\)
\(\chi_{4600}(339,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{91}{110}\right)\)
\(\chi_{4600}(379,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{7}{110}\right)\)
\(\chi_{4600}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{13}{110}\right)\)
\(\chi_{4600}(539,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{61}{110}\right)\)
\(\chi_{4600}(619,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{103}{110}\right)\)
\(\chi_{4600}(659,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{89}{110}\right)\)
\(\chi_{4600}(779,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{23}{110}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{87}{110}\right)\)
\(\chi_{4600}(819,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{53}{110}\right)\)
\(\chi_{4600}(939,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{41}{110}\right)\)
\(\chi_{4600}(1019,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{93}{110}\right)\)
\(\chi_{4600}(1259,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{69}{110}\right)\)
\(\chi_{4600}(1339,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{23}{110}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{101}{110}\right)\)
\(\chi_{4600}(1459,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{39}{110}\right)\)
\(\chi_{4600}(1539,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{81}{110}\right)\)
\(\chi_{4600}(1579,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{67}{110}\right)\)
\(\chi_{4600}(1739,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{31}{110}\right)\)
\(\chi_{4600}(1859,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{19}{110}\right)\)
\(\chi_{4600}(1939,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{71}{110}\right)\)
\(\chi_{4600}(2179,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{47}{110}\right)\)
\(\chi_{4600}(2219,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{73}{110}\right)\)
\(\chi_{4600}(2259,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{79}{110}\right)\)
\(\chi_{4600}(2379,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{17}{110}\right)\)
\(\chi_{4600}(2459,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{59}{110}\right)\)
\(\chi_{4600}(2619,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{43}{110}\right)\)
\(\chi_{4600}(2659,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{9}{110}\right)\)
\(\chi_{4600}(2779,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{107}{110}\right)\)
\(\chi_{4600}(2859,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{49}{110}\right)\)
\(\chi_{4600}(3139,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{103}{110}\right)\) \(e\left(\frac{51}{110}\right)\)
\(\chi_{4600}(3179,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{57}{110}\right)\)
\(\chi_{4600}(3379,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{37}{110}\right)\)