Properties

Label 4600.2253
Modulus $4600$
Conductor $4600$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4600, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10,7,10]))
 
pari: [g,chi] = znchar(Mod(2253,4600))
 

Basic properties

Modulus: \(4600\)
Conductor: \(4600\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4600.bp

\(\chi_{4600}(413,\cdot)\) \(\chi_{4600}(597,\cdot)\) \(\chi_{4600}(1333,\cdot)\) \(\chi_{4600}(1517,\cdot)\) \(\chi_{4600}(2253,\cdot)\) \(\chi_{4600}(2437,\cdot)\) \(\chi_{4600}(3173,\cdot)\) \(\chi_{4600}(4277,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.129457847542653125000000000000000000000000000000.1

Values on generators

\((1151,2301,2577,1201)\) → \((1,-1,e\left(\frac{7}{20}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(27\)\(29\)
\( \chi_{ 4600 }(2253, a) \) \(1\)\(1\)\(e\left(\frac{19}{20}\right)\)\(i\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4600 }(2253,a) \;\) at \(\;a = \) e.g. 2