Properties

Label 460.x
Modulus $460$
Conductor $115$
Order $44$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(460, base_ring=CyclotomicField(44))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,14]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(17,460))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(460\)
Conductor: \(115\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 115.l
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: \(\Q(\zeta_{115})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(27\) \(29\)
\(\chi_{460}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{460}(33,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{460}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{15}{22}\right)\)
\(\chi_{460}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{1}{22}\right)\)
\(\chi_{460}(57,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{19}{22}\right)\)
\(\chi_{460}(97,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{7}{22}\right)\)
\(\chi_{460}(113,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{3}{22}\right)\)
\(\chi_{460}(153,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{9}{22}\right)\)
\(\chi_{460}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{460}(217,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{460}(237,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{1}{22}\right)\)
\(\chi_{460}(273,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{13}{22}\right)\)
\(\chi_{460}(293,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{460}(297,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{3}{22}\right)\)
\(\chi_{460}(313,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{15}{22}\right)\)
\(\chi_{460}(333,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{19}{22}\right)\)
\(\chi_{460}(337,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{9}{22}\right)\)
\(\chi_{460}(373,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{7}{22}\right)\)
\(\chi_{460}(433,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{460}(457,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{13}{22}\right)\)