sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(460, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,0,5]))
pari:[g,chi] = znchar(Mod(181,460))
\(\chi_{460}(21,\cdot)\)
\(\chi_{460}(61,\cdot)\)
\(\chi_{460}(181,\cdot)\)
\(\chi_{460}(201,\cdot)\)
\(\chi_{460}(221,\cdot)\)
\(\chi_{460}(241,\cdot)\)
\(\chi_{460}(281,\cdot)\)
\(\chi_{460}(341,\cdot)\)
\(\chi_{460}(401,\cdot)\)
\(\chi_{460}(421,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((231,277,281)\) → \((1,1,e\left(\frac{5}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(27\) | \(29\) |
\( \chi_{ 460 }(181, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)