sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(46, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([6]))
pari:[g,chi] = znchar(Mod(31,46))
\(\chi_{46}(3,\cdot)\)
\(\chi_{46}(9,\cdot)\)
\(\chi_{46}(13,\cdot)\)
\(\chi_{46}(25,\cdot)\)
\(\chi_{46}(27,\cdot)\)
\(\chi_{46}(29,\cdot)\)
\(\chi_{46}(31,\cdot)\)
\(\chi_{46}(35,\cdot)\)
\(\chi_{46}(39,\cdot)\)
\(\chi_{46}(41,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(5\) → \(e\left(\frac{3}{11}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 46 }(31, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)