Properties

Label 4560.gk
Modulus $4560$
Conductor $456$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(4560, base_ring=CyclotomicField(18))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,9,9,0,13]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(41,4560))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4560\)
Conductor: \(456\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 456.bj
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.14478127324240404768365927869710336.1

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{4560}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{4560}(281,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{4560}(1001,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{4560}(2681,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{4560}(2921,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{4560}(4361,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{18}\right)\)