# Properties

 Label 4560.2387 Modulus $4560$ Conductor $4560$ Order $12$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(4560, base_ring=CyclotomicField(12))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([6,9,6,3,10]))

pari: [g,chi] = znchar(Mod(2387,4560))

## Basic properties

 Modulus: $$4560$$ Conductor: $$4560$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$12$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 4560.fo

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{12})$$ Fixed field: 12.12.74986560506813076209664000000000.2

## Values on generators

$$(1711,1141,3041,2737,1921)$$ → $$(-1,-i,-1,i,e\left(\frac{5}{6}\right))$$

## Values

 $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$1$$ $$1$$ $$i$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 4560 }(2387,a) \;$$ at $$\;a =$$ e.g. 2