sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(451, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([36,15]))
pari:[g,chi] = znchar(Mod(413,451))
| Modulus: | \(451\) | |
| Conductor: | \(451\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(40\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{451}(68,\cdot)\)
\(\chi_{451}(79,\cdot)\)
\(\chi_{451}(85,\cdot)\)
\(\chi_{451}(96,\cdot)\)
\(\chi_{451}(150,\cdot)\)
\(\chi_{451}(161,\cdot)\)
\(\chi_{451}(167,\cdot)\)
\(\chi_{451}(178,\cdot)\)
\(\chi_{451}(249,\cdot)\)
\(\chi_{451}(260,\cdot)\)
\(\chi_{451}(314,\cdot)\)
\(\chi_{451}(325,\cdot)\)
\(\chi_{451}(413,\cdot)\)
\(\chi_{451}(424,\cdot)\)
\(\chi_{451}(437,\cdot)\)
\(\chi_{451}(448,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((288,375)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{3}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 451 }(413, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)