# Properties

 Label 4410.331 Modulus $4410$ Conductor $441$ Order $21$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(4410)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([14,0,16]))

pari: [g,chi] = znchar(Mod(331,4410))

## Basic properties

 Modulus: $$4410$$ Conductor: $$441$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$21$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{441}(331,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 4410.cq

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(3431,2647,1081)$$ → $$(e\left(\frac{2}{3}\right),1,e\left(\frac{16}{21}\right))$$

## Values

 $$-1$$ $$1$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$1$$ $$1$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{5}{21}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{21})$$ Fixed field: 21.21.2972491714150324080426899160865869074720055489.2