Properties

Label 441.436
Modulus $441$
Conductor $441$
Order $21$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,8]))
 
pari: [g,chi] = znchar(Mod(436,441))
 

Basic properties

Modulus: \(441\)
Conductor: \(441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 441.y

\(\chi_{441}(25,\cdot)\) \(\chi_{441}(58,\cdot)\) \(\chi_{441}(88,\cdot)\) \(\chi_{441}(121,\cdot)\) \(\chi_{441}(151,\cdot)\) \(\chi_{441}(184,\cdot)\) \(\chi_{441}(247,\cdot)\) \(\chi_{441}(277,\cdot)\) \(\chi_{441}(310,\cdot)\) \(\chi_{441}(340,\cdot)\) \(\chi_{441}(403,\cdot)\) \(\chi_{441}(436,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((344,199)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{4}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 441 }(436, a) \) \(1\)\(1\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 441 }(436,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 441 }(436,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 441 }(436,·),\chi_{ 441 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 441 }(436,·)) \;\) at \(\; a,b = \) e.g. 1,2