from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([0,9]))
chi.galois_orbit()
[g,chi] = znchar(Mod(55,441))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(441\) | |
Conductor: | \(49\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(14\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 49.f | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{7})\) |
Fixed field: | 14.0.1341068619663964900807.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{441}(55,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(-1\) |
\(\chi_{441}(118,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(-1\) |
\(\chi_{441}(181,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(-1\) |
\(\chi_{441}(307,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(-1\) |
\(\chi_{441}(370,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(-1\) |
\(\chi_{441}(433,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(-1\) |