sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([14,16]))
pari:[g,chi] = znchar(Mod(319,441))
| Modulus: | \(441\) | |
| Conductor: | \(441\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(21\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{441}(4,\cdot)\)
\(\chi_{441}(16,\cdot)\)
\(\chi_{441}(130,\cdot)\)
\(\chi_{441}(142,\cdot)\)
\(\chi_{441}(193,\cdot)\)
\(\chi_{441}(205,\cdot)\)
\(\chi_{441}(256,\cdot)\)
\(\chi_{441}(268,\cdot)\)
\(\chi_{441}(319,\cdot)\)
\(\chi_{441}(331,\cdot)\)
\(\chi_{441}(382,\cdot)\)
\(\chi_{441}(394,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((344,199)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{8}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 441 }(319, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)