Properties

Label 441.268
Modulus $441$
Conductor $441$
Order $21$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([28,38]))
 
pari: [g,chi] = znchar(Mod(268,441))
 

Basic properties

Modulus: \(441\)
Conductor: \(441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 441.z

\(\chi_{441}(4,\cdot)\) \(\chi_{441}(16,\cdot)\) \(\chi_{441}(130,\cdot)\) \(\chi_{441}(142,\cdot)\) \(\chi_{441}(193,\cdot)\) \(\chi_{441}(205,\cdot)\) \(\chi_{441}(256,\cdot)\) \(\chi_{441}(268,\cdot)\) \(\chi_{441}(319,\cdot)\) \(\chi_{441}(331,\cdot)\) \(\chi_{441}(382,\cdot)\) \(\chi_{441}(394,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((344,199)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{19}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 441 }(268, a) \) \(1\)\(1\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 441 }(268,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 441 }(268,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 441 }(268,·),\chi_{ 441 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 441 }(268,·)) \;\) at \(\; a,b = \) e.g. 1,2