sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(440, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,1,1,1]))
chi.galois_orbit()
pari:[g,chi] = znchar(Mod(109,440))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
sage:kronecker_character(-440)
pari:znchartokronecker(g,chi)
\(\displaystyle\left(\frac{-440}{\bullet}\right)\)
| Modulus: | \(440\) | |
| Conductor: | \(440\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | yes |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
| Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
|
\(\chi_{440}(109,\cdot)\)
|
\(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) |