Properties

Label 4334.485
Modulus $4334$
Conductor $197$
Order $196$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4334, base_ring=CyclotomicField(196)) M = H._module chi = DirichletCharacter(H, M([0,171]))
 
Copy content pari:[g,chi] = znchar(Mod(485,4334))
 

Basic properties

Modulus: \(4334\)
Conductor: \(197\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(196\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{197}(91,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4334.bd

\(\chi_{4334}(45,\cdot)\) \(\chi_{4334}(67,\cdot)\) \(\chi_{4334}(89,\cdot)\) \(\chi_{4334}(111,\cdot)\) \(\chi_{4334}(199,\cdot)\) \(\chi_{4334}(243,\cdot)\) \(\chi_{4334}(397,\cdot)\) \(\chi_{4334}(485,\cdot)\) \(\chi_{4334}(573,\cdot)\) \(\chi_{4334}(639,\cdot)\) \(\chi_{4334}(771,\cdot)\) \(\chi_{4334}(793,\cdot)\) \(\chi_{4334}(815,\cdot)\) \(\chi_{4334}(859,\cdot)\) \(\chi_{4334}(903,\cdot)\) \(\chi_{4334}(947,\cdot)\) \(\chi_{4334}(1035,\cdot)\) \(\chi_{4334}(1057,\cdot)\) \(\chi_{4334}(1079,\cdot)\) \(\chi_{4334}(1255,\cdot)\) \(\chi_{4334}(1277,\cdot)\) \(\chi_{4334}(1299,\cdot)\) \(\chi_{4334}(1321,\cdot)\) \(\chi_{4334}(1387,\cdot)\) \(\chi_{4334}(1409,\cdot)\) \(\chi_{4334}(1431,\cdot)\) \(\chi_{4334}(1453,\cdot)\) \(\chi_{4334}(1497,\cdot)\) \(\chi_{4334}(1519,\cdot)\) \(\chi_{4334}(1541,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{196})$
Fixed field: Number field defined by a degree 196 polynomial (not computed)

Values on generators

\((1971,199)\) → \((1,e\left(\frac{171}{196}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 4334 }(485, a) \) \(-1\)\(1\)\(e\left(\frac{179}{196}\right)\)\(e\left(\frac{127}{196}\right)\)\(e\left(\frac{37}{98}\right)\)\(e\left(\frac{81}{98}\right)\)\(e\left(\frac{159}{196}\right)\)\(e\left(\frac{55}{98}\right)\)\(e\left(\frac{141}{196}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{57}{196}\right)\)\(e\left(\frac{34}{49}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4334 }(485,a) \;\) at \(\;a = \) e.g. 2