# Properties

 Label 432.bb Modulus $432$ Conductor $216$ Order $18$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(432, base_ring=CyclotomicField(18))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,9,10]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(25,432))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$432$$ Conductor: $$216$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 216.t sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.18.132173713091594538512566714368.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$
$$\chi_{432}(25,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$
$$\chi_{432}(121,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{8}{9}\right)$$
$$\chi_{432}(169,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{7}{9}\right)$$
$$\chi_{432}(265,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$
$$\chi_{432}(313,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$
$$\chi_{432}(409,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$