sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(432, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,0,10]))
pari:[g,chi] = znchar(Mod(79,432))
\(\chi_{432}(31,\cdot)\)
\(\chi_{432}(79,\cdot)\)
\(\chi_{432}(175,\cdot)\)
\(\chi_{432}(223,\cdot)\)
\(\chi_{432}(319,\cdot)\)
\(\chi_{432}(367,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((271,325,353)\) → \((-1,1,e\left(\frac{5}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 432 }(79, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)