Properties

Conductor 215
Order 28
Real no
Primitive no
Minimal yes
Parity even
Orbit label 430.r

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(430)
 
sage: chi = H[27]
 
pari: [g,chi] = znchar(Mod(27,430))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 215
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 28
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = no
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = even
Orbit label = 430.r
Orbit index = 18

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{430}(27,\cdot)\) \(\chi_{430}(113,\cdot)\) \(\chi_{430}(137,\cdot)\) \(\chi_{430}(217,\cdot)\) \(\chi_{430}(223,\cdot)\) \(\chi_{430}(237,\cdot)\) \(\chi_{430}(247,\cdot)\) \(\chi_{430}(297,\cdot)\) \(\chi_{430}(303,\cdot)\) \(\chi_{430}(323,\cdot)\) \(\chi_{430}(333,\cdot)\) \(\chi_{430}(383,\cdot)\)

Values on generators

\((87,261)\) → \((i,e\left(\frac{1}{14}\right))\)

Values

-1137911131719212327
\(1\)\(1\)\(e\left(\frac{23}{28}\right)\)\(-i\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{1}{28}\right)\)\(e\left(\frac{27}{28}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{13}{28}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{28})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 430 }(27,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{430}(27,\cdot)) = \sum_{r\in \Z/430\Z} \chi_{430}(27,r) e\left(\frac{r}{215}\right) = 14.6187359097+1.136908265i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 430 }(27,·),\chi_{ 430 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{430}(27,\cdot),\chi_{430}(1,\cdot)) = \sum_{r\in \Z/430\Z} \chi_{430}(27,r) \chi_{430}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 430 }(27,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{430}(27,·)) = \sum_{r \in \Z/430\Z} \chi_{430}(27,r) e\left(\frac{1 r + 2 r^{-1}}{430}\right) = 11.7513593927+7.3838684961i \)