Properties

Label 43.g
Modulus $43$
Conductor $43$
Order $21$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(43, base_ring=CyclotomicField(42))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([2]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(9,43))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(43\)
Conductor: \(43\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: \(\Q(\zeta_{43})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{43}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{43}(10,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{43}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{43}(14,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{43}(15,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{43}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{43}(23,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{43}(24,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{43}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{43}(31,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{43}(38,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{43}(40,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{5}{7}\right)\)