Properties

Label 429.5
Modulus $429$
Conductor $429$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(429, base_ring=CyclotomicField(20))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([10,8,15]))
 
pari: [g,chi] = znchar(Mod(5,429))
 

Basic properties

Modulus: \(429\)
Conductor: \(429\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 429.bi

\(\chi_{429}(5,\cdot)\) \(\chi_{429}(47,\cdot)\) \(\chi_{429}(86,\cdot)\) \(\chi_{429}(125,\cdot)\) \(\chi_{429}(203,\cdot)\) \(\chi_{429}(278,\cdot)\) \(\chi_{429}(317,\cdot)\) \(\chi_{429}(356,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((287,79,67)\) → \((-1,e\left(\frac{2}{5}\right),-i)\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(14\)\(16\)\(17\)\(19\)
\(1\)\(1\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(-1\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{19}{20}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.138881946372451702408146629446494920973.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 429 }(5,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{429}(5,\cdot)) = \sum_{r\in \Z/429\Z} \chi_{429}(5,r) e\left(\frac{2r}{429}\right) = 13.2517091873+15.9182977612i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 429 }(5,·),\chi_{ 429 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{429}(5,\cdot),\chi_{429}(1,\cdot)) = \sum_{r\in \Z/429\Z} \chi_{429}(5,r) \chi_{429}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 429 }(5,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{429}(5,·)) = \sum_{r \in \Z/429\Z} \chi_{429}(5,r) e\left(\frac{1 r + 2 r^{-1}}{429}\right) = -0.0 \)