# Properties

 Label 429.5 Modulus $429$ Conductor $429$ Order $20$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(429, base_ring=CyclotomicField(20))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([10,8,15]))

pari: [g,chi] = znchar(Mod(5,429))

## Basic properties

 Modulus: $$429$$ Conductor: $$429$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$20$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 429.bi

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(287,79,67)$$ → $$(-1,e\left(\frac{2}{5}\right),-i)$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$7$$ $$8$$ $$10$$ $$14$$ $$16$$ $$17$$ $$19$$ $$1$$ $$1$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$-1$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{19}{20}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{20})$$ Fixed field: 20.20.138881946372451702408146629446494920973.1

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 429 }(5,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{429}(5,\cdot)) = \sum_{r\in \Z/429\Z} \chi_{429}(5,r) e\left(\frac{2r}{429}\right) = 13.2517091873+15.9182977612i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 429 }(5,·),\chi_{ 429 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{429}(5,\cdot),\chi_{429}(1,\cdot)) = \sum_{r\in \Z/429\Z} \chi_{429}(5,r) \chi_{429}(1,1-r) = -1$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 429 }(5,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{429}(5,·)) = \sum_{r \in \Z/429\Z} \chi_{429}(5,r) e\left(\frac{1 r + 2 r^{-1}}{429}\right) = -0.0$$