Properties

Label 4256.hr
Modulus $4256$
Conductor $4256$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4256, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,15,16,16]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(277,4256))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4256\)
Conductor: \(4256\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(23\) \(25\) \(27\)
\(\chi_{4256}(277,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{4256}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{4256}(1341,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{4256}(1717,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{4256}(2405,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{4256}(2781,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{4256}(3469,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{4256}(3845,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\)