Properties

Label 4176.71
Modulus $4176$
Conductor $696$
Order $14$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4176, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,7,7,9]))
 
Copy content pari:[g,chi] = znchar(Mod(71,4176))
 

Basic properties

Modulus: \(4176\)
Conductor: \(696\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{696}(419,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4176.dh

\(\chi_{4176}(71,\cdot)\) \(\chi_{4176}(647,\cdot)\) \(\chi_{4176}(1079,\cdot)\) \(\chi_{4176}(1223,\cdot)\) \(\chi_{4176}(1367,\cdot)\) \(\chi_{4176}(2951,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.14.47060080384258527434832347136.1

Values on generators

\((1567,1045,929,4033)\) → \((-1,-1,-1,e\left(\frac{9}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(31\)\(35\)
\( \chi_{ 4176 }(71, a) \) \(1\)\(1\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(1\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4176 }(71,a) \;\) at \(\;a = \) e.g. 2