# Properties

 Label 41.9 Modulus $41$ Conductor $41$ Order $4$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(41, base_ring=CyclotomicField(4))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([3]))

pari: [g,chi] = znchar(Mod(9,41))

## Basic properties

 Modulus: $$41$$ Conductor: $$41$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 41.c

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: 4.4.68921.1

## Values on generators

$$6$$ → $$-i$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$7$$ $$8$$ $$9$$ $$10$$ $$11$$ $$1$$ $$1$$ $$-1$$ $$i$$ $$1$$ $$-1$$ $$-i$$ $$i$$ $$-1$$ $$-1$$ $$1$$ $$i$$
 value at e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 41 }(9,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{41}(9,\cdot)) = \sum_{r\in \Z/41\Z} \chi_{41}(9,r) e\left(\frac{2r}{41}\right) = 2.1194785695+-6.0421693615i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 41 }(9,·),\chi_{ 41 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{41}(9,\cdot),\chi_{41}(1,\cdot)) = \sum_{r\in \Z/41\Z} \chi_{41}(9,r) \chi_{41}(1,1-r) = -1$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 41 }(9,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{41}(9,·)) = \sum_{r \in \Z/41\Z} \chi_{41}(9,r) e\left(\frac{1 r + 2 r^{-1}}{41}\right) = -1.9804646361i$$