Properties

Label 4080.1973
Modulus $4080$
Conductor $240$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,1,2,3,0]))
 
Copy content pari:[g,chi] = znchar(Mod(1973,4080))
 

Basic properties

Modulus: \(4080\)
Conductor: \(240\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{240}(53,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4080.dv

\(\chi_{4080}(1973,\cdot)\) \(\chi_{4080}(3197,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.2304000.2

Values on generators

\((511,3061,1361,817,241)\) → \((1,i,-1,-i,1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4080 }(1973, a) \) \(1\)\(1\)\(i\)\(-i\)\(1\)\(i\)\(i\)\(-i\)\(1\)\(1\)\(1\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4080 }(1973,a) \;\) at \(\;a = \) e.g. 2