Properties

Label 4056.cv
Modulus $4056$
Conductor $4056$
Order $78$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([39,39,39,58])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(35,4056)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4056\)
Conductor: \(4056\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(78\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{4056}(35,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{59}{78}\right)\)
\(\chi_{4056}(107,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{67}{78}\right)\)
\(\chi_{4056}(347,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{71}{78}\right)\)
\(\chi_{4056}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{25}{78}\right)\)
\(\chi_{4056}(659,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{78}\right)\)
\(\chi_{4056}(731,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{61}{78}\right)\)
\(\chi_{4056}(971,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{17}{78}\right)\)
\(\chi_{4056}(1043,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{19}{78}\right)\)
\(\chi_{4056}(1283,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{29}{78}\right)\)
\(\chi_{4056}(1355,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{55}{78}\right)\)
\(\chi_{4056}(1595,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{41}{78}\right)\)
\(\chi_{4056}(1907,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{53}{78}\right)\)
\(\chi_{4056}(1979,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{49}{78}\right)\)
\(\chi_{4056}(2291,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{7}{78}\right)\)
\(\chi_{4056}(2531,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{77}{78}\right)\)
\(\chi_{4056}(2603,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{43}{78}\right)\)
\(\chi_{4056}(2843,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{11}{78}\right)\)
\(\chi_{4056}(2915,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{78}\right)\)
\(\chi_{4056}(3155,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{23}{78}\right)\)
\(\chi_{4056}(3227,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{78}\right)\)
\(\chi_{4056}(3467,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{35}{78}\right)\)
\(\chi_{4056}(3539,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{73}{78}\right)\)
\(\chi_{4056}(3779,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{47}{78}\right)\)
\(\chi_{4056}(3851,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{31}{78}\right)\)