Properties

Label 4056.67
Modulus $4056$
Conductor $1352$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,78,0,37]))
 
Copy content pari:[g,chi] = znchar(Mod(67,4056))
 

Basic properties

Modulus: \(4056\)
Conductor: \(1352\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1352}(67,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4056.dk

\(\chi_{4056}(67,\cdot)\) \(\chi_{4056}(115,\cdot)\) \(\chi_{4056}(163,\cdot)\) \(\chi_{4056}(331,\cdot)\) \(\chi_{4056}(379,\cdot)\) \(\chi_{4056}(475,\cdot)\) \(\chi_{4056}(643,\cdot)\) \(\chi_{4056}(691,\cdot)\) \(\chi_{4056}(739,\cdot)\) \(\chi_{4056}(787,\cdot)\) \(\chi_{4056}(955,\cdot)\) \(\chi_{4056}(1003,\cdot)\) \(\chi_{4056}(1051,\cdot)\) \(\chi_{4056}(1099,\cdot)\) \(\chi_{4056}(1267,\cdot)\) \(\chi_{4056}(1315,\cdot)\) \(\chi_{4056}(1363,\cdot)\) \(\chi_{4056}(1411,\cdot)\) \(\chi_{4056}(1579,\cdot)\) \(\chi_{4056}(1627,\cdot)\) \(\chi_{4056}(1675,\cdot)\) \(\chi_{4056}(1723,\cdot)\) \(\chi_{4056}(1891,\cdot)\) \(\chi_{4056}(1987,\cdot)\) \(\chi_{4056}(2035,\cdot)\) \(\chi_{4056}(2203,\cdot)\) \(\chi_{4056}(2251,\cdot)\) \(\chi_{4056}(2299,\cdot)\) \(\chi_{4056}(2515,\cdot)\) \(\chi_{4056}(2563,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((1015,2029,2705,3889)\) → \((-1,-1,1,e\left(\frac{37}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 4056 }(67, a) \) \(1\)\(1\)\(e\left(\frac{33}{52}\right)\)\(e\left(\frac{137}{156}\right)\)\(e\left(\frac{67}{156}\right)\)\(e\left(\frac{49}{78}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{26}\right)\)\(e\left(\frac{77}{78}\right)\)\(e\left(\frac{25}{52}\right)\)\(e\left(\frac{20}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4056 }(67,a) \;\) at \(\;a = \) e.g. 2