Properties

Label 405.r
Modulus $405$
Conductor $135$
Order $36$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([2,27]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(8,405))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(405\)
Conductor: \(135\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 135.q
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: \(\Q(\zeta_{135})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{405}(8,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{405}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{405}(62,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{405}(98,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{405}(143,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{405}(152,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{405}(197,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{405}(233,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{405}(278,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{405}(287,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{405}(332,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{405}(368,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)