Properties

Conductor 4033
Order 108
Real No
Primitive Yes
Parity Even
Orbit Label 4033.hy

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(4033)
 
sage: chi = H[24]
 
pari: [g,chi] = znchar(Mod(24,4033))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 4033
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 108
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 4033.hy
Orbit index = 207

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{4033}(24,\cdot)\) \(\chi_{4033}(166,\cdot)\) \(\chi_{4033}(168,\cdot)\) \(\chi_{4033}(466,\cdot)\) \(\chi_{4033}(476,\cdot)\) \(\chi_{4033}(701,\cdot)\) \(\chi_{4033}(942,\cdot)\) \(\chi_{4033}(994,\cdot)\) \(\chi_{4033}(1108,\cdot)\) \(\chi_{4033}(1132,\cdot)\) \(\chi_{4033}(1162,\cdot)\) \(\chi_{4033}(1314,\cdot)\) \(\chi_{4033}(1364,\cdot)\) \(\chi_{4033}(1482,\cdot)\) \(\chi_{4033}(1537,\cdot)\) \(\chi_{4033}(1795,\cdot)\) \(\chi_{4033}(1863,\cdot)\) \(\chi_{4033}(1948,\cdot)\) \(\chi_{4033}(2085,\cdot)\) \(\chi_{4033}(2170,\cdot)\) \(\chi_{4033}(2238,\cdot)\) \(\chi_{4033}(2496,\cdot)\) \(\chi_{4033}(2551,\cdot)\) \(\chi_{4033}(2669,\cdot)\) \(\chi_{4033}(2719,\cdot)\) \(\chi_{4033}(2871,\cdot)\) \(\chi_{4033}(2901,\cdot)\) \(\chi_{4033}(2925,\cdot)\) \(\chi_{4033}(3039,\cdot)\) \(\chi_{4033}(3091,\cdot)\) ...

Values on generators

\((1963,2295)\) → \((e\left(\frac{29}{36}\right),e\left(\frac{7}{108}\right))\)

Values

-11234567891011
\(1\)\(1\)\(-1\)\(e\left(\frac{17}{54}\right)\)\(1\)\(e\left(\frac{49}{108}\right)\)\(e\left(\frac{22}{27}\right)\)\(e\left(\frac{10}{27}\right)\)\(-1\)\(e\left(\frac{17}{27}\right)\)\(e\left(\frac{103}{108}\right)\)\(e\left(\frac{59}{108}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{108})\)