Properties

Conductor 4033
Order 54
Real No
Primitive Yes
Parity Even
Orbit Label 4033.hi

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(4033)
 
sage: chi = H[12]
 
pari: [g,chi] = znchar(Mod(12,4033))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 4033
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 54
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 4033.hi
Orbit index = 191

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{4033}(12,\cdot)\) \(\chi_{4033}(292,\cdot)\) \(\chi_{4033}(847,\cdot)\) \(\chi_{4033}(959,\cdot)\) \(\chi_{4033}(974,\cdot)\) \(\chi_{4033}(978,\cdot)\) \(\chi_{4033}(1085,\cdot)\) \(\chi_{4033}(1718,\cdot)\) \(\chi_{4033}(1884,\cdot)\) \(\chi_{4033}(2486,\cdot)\) \(\chi_{4033}(2636,\cdot)\) \(\chi_{4033}(2754,\cdot)\) \(\chi_{4033}(2819,\cdot)\) \(\chi_{4033}(2895,\cdot)\) \(\chi_{4033}(3080,\cdot)\) \(\chi_{4033}(3548,\cdot)\) \(\chi_{4033}(3633,\cdot)\) \(\chi_{4033}(3697,\cdot)\)

Values on generators

\((1963,2295)\) → \((e\left(\frac{7}{9}\right),e\left(\frac{29}{54}\right))\)

Values

-11234567891011
\(1\)\(1\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{4}{27}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{19}{27}\right)\)\(e\left(\frac{29}{54}\right)\)\(e\left(\frac{10}{27}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{8}{27}\right)\)\(e\left(\frac{5}{54}\right)\)\(e\left(\frac{49}{54}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{27})\)