sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4032, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,9,6,2]))
pari:[g,chi] = znchar(Mod(17,4032))
\(\chi_{4032}(17,\cdot)\)
\(\chi_{4032}(593,\cdot)\)
\(\chi_{4032}(2033,\cdot)\)
\(\chi_{4032}(2609,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,3781,1793,577)\) → \((1,-i,-1,e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 4032 }(17, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage:chi.jacobi_sum(n)