Properties

Label 40310.fy
Modulus $40310$
Conductor $20155$
Order $1932$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(1932)) M = H._module chi = DirichletCharacter(H, M([1449,1242,896])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,40310)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1932\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 20155.gb
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{1932})$
Fixed field: Number field defined by a degree 1932 polynomial (not computed)

First 19 of 528 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{40310}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{925}{1932}\right)\) \(e\left(\frac{1261}{1932}\right)\) \(e\left(\frac{925}{966}\right)\) \(e\left(\frac{307}{966}\right)\) \(e\left(\frac{971}{1932}\right)\) \(e\left(\frac{241}{276}\right)\) \(e\left(\frac{278}{483}\right)\) \(e\left(\frac{127}{966}\right)\) \(e\left(\frac{405}{644}\right)\) \(e\left(\frac{281}{644}\right)\)
\(\chi_{40310}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{559}{1932}\right)\) \(e\left(\frac{643}{1932}\right)\) \(e\left(\frac{559}{966}\right)\) \(e\left(\frac{715}{966}\right)\) \(e\left(\frac{1157}{1932}\right)\) \(e\left(\frac{43}{276}\right)\) \(e\left(\frac{380}{483}\right)\) \(e\left(\frac{601}{966}\right)\) \(e\left(\frac{15}{644}\right)\) \(e\left(\frac{559}{644}\right)\)
\(\chi_{40310}(167,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1627}{1932}\right)\) \(e\left(\frac{451}{1932}\right)\) \(e\left(\frac{661}{966}\right)\) \(e\left(\frac{823}{966}\right)\) \(e\left(\frac{1121}{1932}\right)\) \(e\left(\frac{19}{276}\right)\) \(e\left(\frac{407}{483}\right)\) \(e\left(\frac{73}{966}\right)\) \(e\left(\frac{319}{644}\right)\) \(e\left(\frac{339}{644}\right)\)
\(\chi_{40310}(283,\cdot)\) \(-1\) \(1\) \(e\left(\frac{857}{1932}\right)\) \(e\left(\frac{101}{1932}\right)\) \(e\left(\frac{857}{966}\right)\) \(e\left(\frac{557}{966}\right)\) \(e\left(\frac{1639}{1932}\right)\) \(e\left(\frac{257}{276}\right)\) \(e\left(\frac{421}{483}\right)\) \(e\left(\frac{479}{966}\right)\) \(e\left(\frac{417}{644}\right)\) \(e\left(\frac{213}{644}\right)\)
\(\chi_{40310}(303,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1093}{1932}\right)\) \(e\left(\frac{1513}{1932}\right)\) \(e\left(\frac{127}{966}\right)\) \(e\left(\frac{769}{966}\right)\) \(e\left(\frac{1139}{1932}\right)\) \(e\left(\frac{169}{276}\right)\) \(e\left(\frac{152}{483}\right)\) \(e\left(\frac{337}{966}\right)\) \(e\left(\frac{489}{644}\right)\) \(e\left(\frac{449}{644}\right)\)
\(\chi_{40310}(593,\cdot)\) \(-1\) \(1\) \(e\left(\frac{449}{1932}\right)\) \(e\left(\frac{869}{1932}\right)\) \(e\left(\frac{449}{966}\right)\) \(e\left(\frac{125}{966}\right)\) \(e\left(\frac{1783}{1932}\right)\) \(e\left(\frac{77}{276}\right)\) \(e\left(\frac{313}{483}\right)\) \(e\left(\frac{659}{966}\right)\) \(e\left(\frac{489}{644}\right)\) \(e\left(\frac{449}{644}\right)\)
\(\chi_{40310}(673,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1349}{1932}\right)\) \(e\left(\frac{425}{1932}\right)\) \(e\left(\frac{383}{966}\right)\) \(e\left(\frac{737}{966}\right)\) \(e\left(\frac{1579}{1932}\right)\) \(e\left(\frac{125}{276}\right)\) \(e\left(\frac{466}{483}\right)\) \(e\left(\frac{887}{966}\right)\) \(e\left(\frac{65}{644}\right)\) \(e\left(\frac{61}{644}\right)\)
\(\chi_{40310}(817,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1871}{1932}\right)\) \(e\left(\frac{863}{1932}\right)\) \(e\left(\frac{905}{966}\right)\) \(e\left(\frac{551}{966}\right)\) \(e\left(\frac{997}{1932}\right)\) \(e\left(\frac{59}{276}\right)\) \(e\left(\frac{178}{483}\right)\) \(e\left(\frac{401}{966}\right)\) \(e\left(\frac{579}{644}\right)\) \(e\left(\frac{583}{644}\right)\)
\(\chi_{40310}(847,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1615}{1932}\right)\) \(e\left(\frac{19}{1932}\right)\) \(e\left(\frac{649}{966}\right)\) \(e\left(\frac{583}{966}\right)\) \(e\left(\frac{557}{1932}\right)\) \(e\left(\frac{103}{276}\right)\) \(e\left(\frac{347}{483}\right)\) \(e\left(\frac{817}{966}\right)\) \(e\left(\frac{359}{644}\right)\) \(e\left(\frac{327}{644}\right)\)
\(\chi_{40310}(863,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1585}{1932}\right)\) \(e\left(\frac{1837}{1932}\right)\) \(e\left(\frac{619}{966}\right)\) \(e\left(\frac{949}{966}\right)\) \(e\left(\frac{1079}{1932}\right)\) \(e\left(\frac{37}{276}\right)\) \(e\left(\frac{197}{483}\right)\) \(e\left(\frac{745}{966}\right)\) \(e\left(\frac{137}{644}\right)\) \(e\left(\frac{297}{644}\right)\)
\(\chi_{40310}(883,\cdot)\) \(-1\) \(1\) \(e\left(\frac{337}{1932}\right)\) \(e\left(\frac{1345}{1932}\right)\) \(e\left(\frac{337}{966}\right)\) \(e\left(\frac{139}{966}\right)\) \(e\left(\frac{383}{1932}\right)\) \(e\left(\frac{217}{276}\right)\) \(e\left(\frac{236}{483}\right)\) \(e\left(\frac{841}{966}\right)\) \(e\left(\frac{433}{644}\right)\) \(e\left(\frac{337}{644}\right)\)
\(\chi_{40310}(903,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1565}{1932}\right)\) \(e\left(\frac{473}{1932}\right)\) \(e\left(\frac{599}{966}\right)\) \(e\left(\frac{227}{966}\right)\) \(e\left(\frac{139}{1932}\right)\) \(e\left(\frac{269}{276}\right)\) \(e\left(\frac{97}{483}\right)\) \(e\left(\frac{53}{966}\right)\) \(e\left(\frac{633}{644}\right)\) \(e\left(\frac{277}{644}\right)\)
\(\chi_{40310}(933,\cdot)\) \(-1\) \(1\) \(e\left(\frac{233}{1932}\right)\) \(e\left(\frac{821}{1932}\right)\) \(e\left(\frac{233}{966}\right)\) \(e\left(\frac{635}{966}\right)\) \(e\left(\frac{1291}{1932}\right)\) \(e\left(\frac{209}{276}\right)\) \(e\left(\frac{199}{483}\right)\) \(e\left(\frac{527}{966}\right)\) \(e\left(\frac{565}{644}\right)\) \(e\left(\frac{233}{644}\right)\)
\(\chi_{40310}(1137,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1783}{1932}\right)\) \(e\left(\frac{271}{1932}\right)\) \(e\left(\frac{817}{966}\right)\) \(e\left(\frac{79}{966}\right)\) \(e\left(\frac{725}{1932}\right)\) \(e\left(\frac{31}{276}\right)\) \(e\left(\frac{221}{483}\right)\) \(e\left(\frac{61}{966}\right)\) \(e\left(\frac{443}{644}\right)\) \(e\left(\frac{495}{644}\right)\)
\(\chi_{40310}(1153,\cdot)\) \(-1\) \(1\) \(e\left(\frac{773}{1932}\right)\) \(e\left(\frac{941}{1932}\right)\) \(e\left(\frac{773}{966}\right)\) \(e\left(\frac{809}{966}\right)\) \(e\left(\frac{1555}{1932}\right)\) \(e\left(\frac{17}{276}\right)\) \(e\left(\frac{1}{483}\right)\) \(e\left(\frac{857}{966}\right)\) \(e\left(\frac{53}{644}\right)\) \(e\left(\frac{129}{644}\right)\)
\(\chi_{40310}(1193,\cdot)\) \(-1\) \(1\) \(e\left(\frac{641}{1932}\right)\) \(e\left(\frac{53}{1932}\right)\) \(e\left(\frac{641}{966}\right)\) \(e\left(\frac{101}{966}\right)\) \(e\left(\frac{1147}{1932}\right)\) \(e\left(\frac{113}{276}\right)\) \(e\left(\frac{307}{483}\right)\) \(e\left(\frac{347}{966}\right)\) \(e\left(\frac{493}{644}\right)\) \(e\left(\frac{641}{644}\right)\)
\(\chi_{40310}(1397,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1031}{1932}\right)\) \(e\left(\frac{1535}{1932}\right)\) \(e\left(\frac{65}{966}\right)\) \(e\left(\frac{173}{966}\right)\) \(e\left(\frac{157}{1932}\right)\) \(e\left(\frac{143}{276}\right)\) \(e\left(\frac{325}{483}\right)\) \(e\left(\frac{317}{966}\right)\) \(e\left(\frac{159}{644}\right)\) \(e\left(\frac{387}{644}\right)\)
\(\chi_{40310}(1427,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1139}{1932}\right)\) \(e\left(\frac{1559}{1932}\right)\) \(e\left(\frac{173}{966}\right)\) \(e\left(\frac{401}{966}\right)\) \(e\left(\frac{1369}{1932}\right)\) \(e\left(\frac{215}{276}\right)\) \(e\left(\frac{382}{483}\right)\) \(e\left(\frac{383}{966}\right)\) \(e\left(\frac{443}{644}\right)\) \(e\left(\frac{495}{644}\right)\)
\(\chi_{40310}(1517,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1567}{1932}\right)\) \(e\left(\frac{223}{1932}\right)\) \(e\left(\frac{601}{966}\right)\) \(e\left(\frac{589}{966}\right)\) \(e\left(\frac{233}{1932}\right)\) \(e\left(\frac{163}{276}\right)\) \(e\left(\frac{107}{483}\right)\) \(e\left(\frac{895}{966}\right)\) \(e\left(\frac{519}{644}\right)\) \(e\left(\frac{279}{644}\right)\)