Properties

Label 40310.ep
Modulus $40310$
Conductor $20155$
Order $276$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(276)) M = H._module chi = DirichletCharacter(H, M([69,207,214])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(17,40310)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(276\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 20155.ef
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{276})$
Fixed field: Number field defined by a degree 276 polynomial (not computed)

First 31 of 88 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{40310}(17,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{69}\right)\) \(e\left(\frac{5}{276}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{187}{276}\right)\) \(e\left(\frac{241}{276}\right)\) \(e\left(\frac{133}{138}\right)\) \(e\left(\frac{151}{276}\right)\) \(e\left(\frac{85}{276}\right)\) \(e\left(\frac{63}{92}\right)\) \(e\left(\frac{20}{23}\right)\)
\(\chi_{40310}(273,\cdot)\) \(-1\) \(1\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{251}{276}\right)\) \(e\left(\frac{7}{69}\right)\) \(e\left(\frac{169}{276}\right)\) \(e\left(\frac{175}{276}\right)\) \(e\left(\frac{25}{138}\right)\) \(e\left(\frac{73}{276}\right)\) \(e\left(\frac{127}{276}\right)\) \(e\left(\frac{53}{92}\right)\) \(e\left(\frac{15}{23}\right)\)
\(\chi_{40310}(853,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{235}{276}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{233}{276}\right)\) \(e\left(\frac{11}{276}\right)\) \(e\left(\frac{41}{138}\right)\) \(e\left(\frac{197}{276}\right)\) \(e\left(\frac{131}{276}\right)\) \(e\left(\frac{17}{92}\right)\) \(e\left(\frac{20}{23}\right)\)
\(\chi_{40310}(887,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{77}{276}\right)\) \(e\left(\frac{64}{69}\right)\) \(e\left(\frac{175}{276}\right)\) \(e\left(\frac{13}{276}\right)\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{7}{276}\right)\) \(e\left(\frac{205}{276}\right)\) \(e\left(\frac{87}{92}\right)\) \(e\left(\frac{9}{23}\right)\)
\(\chi_{40310}(2047,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{69}\right)\) \(e\left(\frac{197}{276}\right)\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{247}{276}\right)\) \(e\left(\frac{1}{276}\right)\) \(e\left(\frac{79}{138}\right)\) \(e\left(\frac{43}{276}\right)\) \(e\left(\frac{37}{276}\right)\) \(e\left(\frac{35}{92}\right)\) \(e\left(\frac{6}{23}\right)\)
\(\chi_{40310}(3173,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{69}\right)\) \(e\left(\frac{191}{276}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{133}{276}\right)\) \(e\left(\frac{43}{276}\right)\) \(e\left(\frac{85}{138}\right)\) \(e\left(\frac{193}{276}\right)\) \(e\left(\frac{211}{276}\right)\) \(e\left(\frac{33}{92}\right)\) \(e\left(\frac{5}{23}\right)\)
\(\chi_{40310}(3497,\cdot)\) \(-1\) \(1\) \(e\left(\frac{26}{69}\right)\) \(e\left(\frac{41}{276}\right)\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{43}{276}\right)\) \(e\left(\frac{265}{276}\right)\) \(e\left(\frac{97}{138}\right)\) \(e\left(\frac{79}{276}\right)\) \(e\left(\frac{145}{276}\right)\) \(e\left(\frac{75}{92}\right)\) \(e\left(\frac{3}{23}\right)\)
\(\chi_{40310}(4043,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{91}{276}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{257}{276}\right)\) \(e\left(\frac{191}{276}\right)\) \(e\left(\frac{47}{138}\right)\) \(e\left(\frac{209}{276}\right)\) \(e\left(\frac{167}{276}\right)\) \(e\left(\frac{61}{92}\right)\) \(e\left(\frac{19}{23}\right)\)
\(\chi_{40310}(4367,\cdot)\) \(-1\) \(1\) \(e\left(\frac{50}{69}\right)\) \(e\left(\frac{185}{276}\right)\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{19}{276}\right)\) \(e\left(\frac{85}{276}\right)\) \(e\left(\frac{91}{138}\right)\) \(e\left(\frac{67}{276}\right)\) \(e\left(\frac{109}{276}\right)\) \(e\left(\frac{31}{92}\right)\) \(e\left(\frac{4}{23}\right)\)
\(\chi_{40310}(4657,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{69}\right)\) \(e\left(\frac{245}{276}\right)\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{55}{276}\right)\) \(e\left(\frac{217}{276}\right)\) \(e\left(\frac{31}{138}\right)\) \(e\left(\frac{223}{276}\right)\) \(e\left(\frac{25}{276}\right)\) \(e\left(\frac{51}{92}\right)\) \(e\left(\frac{14}{23}\right)\)
\(\chi_{40310}(5493,\cdot)\) \(-1\) \(1\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{151}{276}\right)\) \(e\left(\frac{35}{69}\right)\) \(e\left(\frac{17}{276}\right)\) \(e\left(\frac{47}{276}\right)\) \(e\left(\frac{125}{138}\right)\) \(e\left(\frac{89}{276}\right)\) \(e\left(\frac{83}{276}\right)\) \(e\left(\frac{81}{92}\right)\) \(e\left(\frac{6}{23}\right)\)
\(\chi_{40310}(6107,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{69}\right)\) \(e\left(\frac{265}{276}\right)\) \(e\left(\frac{50}{69}\right)\) \(e\left(\frac{251}{276}\right)\) \(e\left(\frac{77}{276}\right)\) \(e\left(\frac{11}{138}\right)\) \(e\left(\frac{275}{276}\right)\) \(e\left(\frac{89}{276}\right)\) \(e\left(\frac{27}{92}\right)\) \(e\left(\frac{2}{23}\right)\)
\(\chi_{40310}(6363,\cdot)\) \(-1\) \(1\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{11}{276}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{25}{276}\right)\) \(e\left(\frac{199}{276}\right)\) \(e\left(\frac{127}{138}\right)\) \(e\left(\frac{1}{276}\right)\) \(e\left(\frac{187}{276}\right)\) \(e\left(\frac{65}{92}\right)\) \(e\left(\frac{21}{23}\right)\)
\(\chi_{40310}(6397,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{29}{276}\right)\) \(e\left(\frac{25}{69}\right)\) \(e\left(\frac{91}{276}\right)\) \(e\left(\frac{73}{276}\right)\) \(e\left(\frac{109}{138}\right)\) \(e\left(\frac{103}{276}\right)\) \(e\left(\frac{217}{276}\right)\) \(e\left(\frac{71}{92}\right)\) \(e\left(\frac{1}{23}\right)\)
\(\chi_{40310}(6687,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{69}\right)\) \(e\left(\frac{73}{276}\right)\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{191}{276}\right)\) \(e\left(\frac{41}{276}\right)\) \(e\left(\frac{65}{138}\right)\) \(e\left(\frac{107}{276}\right)\) \(e\left(\frac{137}{276}\right)\) \(e\left(\frac{55}{92}\right)\) \(e\left(\frac{16}{23}\right)\)
\(\chi_{40310}(6943,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{239}{276}\right)\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{217}{276}\right)\) \(e\left(\frac{259}{276}\right)\) \(e\left(\frac{37}{138}\right)\) \(e\left(\frac{97}{276}\right)\) \(e\left(\frac{199}{276}\right)\) \(e\left(\frac{49}{92}\right)\) \(e\left(\frac{13}{23}\right)\)
\(\chi_{40310}(7523,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{69}\right)\) \(e\left(\frac{143}{276}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{49}{276}\right)\) \(e\left(\frac{103}{276}\right)\) \(e\left(\frac{133}{138}\right)\) \(e\left(\frac{13}{276}\right)\) \(e\left(\frac{223}{276}\right)\) \(e\left(\frac{17}{92}\right)\) \(e\left(\frac{20}{23}\right)\)
\(\chi_{40310}(8393,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{215}{276}\right)\) \(e\left(\frac{64}{69}\right)\) \(e\left(\frac{37}{276}\right)\) \(e\left(\frac{151}{276}\right)\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{145}{276}\right)\) \(e\left(\frac{67}{276}\right)\) \(e\left(\frac{41}{92}\right)\) \(e\left(\frac{9}{23}\right)\)
\(\chi_{40310}(9007,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{25}{276}\right)\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{107}{276}\right)\) \(e\left(\frac{101}{276}\right)\) \(e\left(\frac{113}{138}\right)\) \(e\left(\frac{203}{276}\right)\) \(e\left(\frac{149}{276}\right)\) \(e\left(\frac{39}{92}\right)\) \(e\left(\frac{8}{23}\right)\)
\(\chi_{40310}(9297,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{193}{276}\right)\) \(e\left(\frac{26}{69}\right)\) \(e\left(\frac{263}{276}\right)\) \(e\left(\frac{29}{276}\right)\) \(e\left(\frac{83}{138}\right)\) \(e\left(\frac{143}{276}\right)\) \(e\left(\frac{245}{276}\right)\) \(e\left(\frac{3}{92}\right)\) \(e\left(\frac{13}{23}\right)\)
\(\chi_{40310}(9553,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{69}\right)\) \(e\left(\frac{59}{276}\right)\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{109}{276}\right)\) \(e\left(\frac{139}{276}\right)\) \(e\left(\frac{79}{138}\right)\) \(e\left(\frac{181}{276}\right)\) \(e\left(\frac{175}{276}\right)\) \(e\left(\frac{81}{92}\right)\) \(e\left(\frac{6}{23}\right)\)
\(\chi_{40310}(9587,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{269}{276}\right)\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{235}{276}\right)\) \(e\left(\frac{49}{276}\right)\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{175}{276}\right)\) \(e\left(\frac{157}{276}\right)\) \(e\left(\frac{59}{92}\right)\) \(e\left(\frac{18}{23}\right)\)
\(\chi_{40310}(10457,\cdot)\) \(-1\) \(1\) \(e\left(\frac{68}{69}\right)\) \(e\left(\frac{17}{276}\right)\) \(e\left(\frac{67}{69}\right)\) \(e\left(\frac{139}{276}\right)\) \(e\left(\frac{157}{276}\right)\) \(e\left(\frac{121}{138}\right)\) \(e\left(\frac{127}{276}\right)\) \(e\left(\frac{13}{276}\right)\) \(e\left(\frac{67}{92}\right)\) \(e\left(\frac{22}{23}\right)\)
\(\chi_{40310}(11003,\cdot)\) \(-1\) \(1\) \(e\left(\frac{26}{69}\right)\) \(e\left(\frac{179}{276}\right)\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{181}{276}\right)\) \(e\left(\frac{127}{276}\right)\) \(e\left(\frac{97}{138}\right)\) \(e\left(\frac{217}{276}\right)\) \(e\left(\frac{7}{276}\right)\) \(e\left(\frac{29}{92}\right)\) \(e\left(\frac{3}{23}\right)\)
\(\chi_{40310}(11037,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{125}{276}\right)\) \(e\left(\frac{34}{69}\right)\) \(e\left(\frac{259}{276}\right)\) \(e\left(\frac{229}{276}\right)\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{187}{276}\right)\) \(e\left(\frac{193}{276}\right)\) \(e\left(\frac{11}{92}\right)\) \(e\left(\frac{17}{23}\right)\)
\(\chi_{40310}(11327,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{205}{276}\right)\) \(e\left(\frac{53}{69}\right)\) \(e\left(\frac{215}{276}\right)\) \(e\left(\frac{221}{276}\right)\) \(e\left(\frac{71}{138}\right)\) \(e\left(\frac{119}{276}\right)\) \(e\left(\frac{173}{276}\right)\) \(e\left(\frac{7}{92}\right)\) \(e\left(\frac{15}{23}\right)\)
\(\chi_{40310}(11873,\cdot)\) \(-1\) \(1\) \(e\left(\frac{50}{69}\right)\) \(e\left(\frac{47}{276}\right)\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{157}{276}\right)\) \(e\left(\frac{223}{276}\right)\) \(e\left(\frac{91}{138}\right)\) \(e\left(\frac{205}{276}\right)\) \(e\left(\frac{247}{276}\right)\) \(e\left(\frac{77}{92}\right)\) \(e\left(\frac{4}{23}\right)\)
\(\chi_{40310}(11907,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{69}\right)\) \(e\left(\frac{209}{276}\right)\) \(e\left(\frac{16}{69}\right)\) \(e\left(\frac{199}{276}\right)\) \(e\left(\frac{193}{276}\right)\) \(e\left(\frac{67}{138}\right)\) \(e\left(\frac{19}{276}\right)\) \(e\left(\frac{241}{276}\right)\) \(e\left(\frac{39}{92}\right)\) \(e\left(\frac{8}{23}\right)\)
\(\chi_{40310}(12163,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{69}\right)\) \(e\left(\frac{107}{276}\right)\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{193}{276}\right)\) \(e\left(\frac{79}{276}\right)\) \(e\left(\frac{31}{138}\right)\) \(e\left(\frac{85}{276}\right)\) \(e\left(\frac{163}{276}\right)\) \(e\left(\frac{5}{92}\right)\) \(e\left(\frac{14}{23}\right)\)
\(\chi_{40310}(12197,\cdot)\) \(-1\) \(1\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{145}{276}\right)\) \(e\left(\frac{56}{69}\right)\) \(e\left(\frac{179}{276}\right)\) \(e\left(\frac{89}{276}\right)\) \(e\left(\frac{131}{138}\right)\) \(e\left(\frac{239}{276}\right)\) \(e\left(\frac{257}{276}\right)\) \(e\left(\frac{79}{92}\right)\) \(e\left(\frac{5}{23}\right)\)
\(\chi_{40310}(12777,\cdot)\) \(-1\) \(1\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{217}{276}\right)\) \(e\left(\frac{11}{69}\right)\) \(e\left(\frac{167}{276}\right)\) \(e\left(\frac{137}{276}\right)\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{95}{276}\right)\) \(e\left(\frac{101}{276}\right)\) \(e\left(\frac{11}{92}\right)\) \(e\left(\frac{17}{23}\right)\)