Properties

Label 40310.da
Modulus $40310$
Conductor $20155$
Order $84$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40310, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,39,70]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(43,40310))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 20155.dk
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{40310}(43,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{40310}(97,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{40310}(1487,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{40310}(3433,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{40310}(7827,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{40310}(8383,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{40310}(8437,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{40310}(8993,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{40310}(13387,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{40310}(15333,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{40310}(16723,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{40310}(16777,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{40310}(18947,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{40310}(20337,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{40310}(21503,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{40310}(22283,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{40310}(27287,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{40310}(27843,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{40310}(29287,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{40310}(29843,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{40310}(34847,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{40310}(35627,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{40310}(36793,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{40310}(38183,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\)