Properties

Label 40310.cs
Modulus $40310$
Conductor $695$
Order $46$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40310, base_ring=CyclotomicField(46))
 
M = H._module
 
chi = DirichletCharacter(H, M([23,0,7]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(59,40310))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(40310\)
Conductor: \(695\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(46\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 695.n
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{23})\)
Fixed field: 46.0.32506941609913674715356871213478525555718840947168228744163199689015235118467271106844101910141694545745849609375.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{40310}(59,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{23}\right)\) \(e\left(\frac{5}{46}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{11}{46}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{39}{46}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{5}{23}\right)\)
\(\chi_{40310}(929,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{35}{46}\right)\) \(e\left(\frac{8}{23}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{31}{46}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{43}{46}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{12}{23}\right)\)
\(\chi_{40310}(3829,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{15}{46}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{33}{46}\right)\) \(e\left(\frac{8}{23}\right)\) \(e\left(\frac{39}{46}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{15}{23}\right)\)
\(\chi_{40310}(6149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{35}{46}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{33}{46}\right)\) \(e\left(\frac{7}{46}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{18}{23}\right)\)
\(\chi_{40310}(7889,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{29}{46}\right)\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{27}{46}\right)\) \(e\left(\frac{17}{23}\right)\) \(e\left(\frac{11}{46}\right)\) \(e\left(\frac{33}{46}\right)\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{6}{23}\right)\)
\(\chi_{40310}(9049,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{7}{46}\right)\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{29}{46}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{22}{23}\right)\)
\(\chi_{40310}(10209,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{7}{46}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{43}{46}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{27}{46}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{7}{23}\right)\)
\(\chi_{40310}(10499,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{39}{46}\right)\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{3}{46}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{37}{46}\right)\) \(e\left(\frac{19}{46}\right)\) \(e\left(\frac{8}{23}\right)\) \(e\left(\frac{16}{23}\right)\)
\(\chi_{40310}(14559,\cdot)\) \(-1\) \(1\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{43}{46}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{21}{46}\right)\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{29}{46}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{20}{23}\right)\)
\(\chi_{40310}(16589,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{37}{46}\right)\) \(e\left(\frac{17}{23}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{17}{46}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{31}{46}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{14}{23}\right)\)
\(\chi_{40310}(16879,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{11}{46}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{15}{46}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{1}{46}\right)\) \(e\left(\frac{3}{46}\right)\) \(e\left(\frac{17}{23}\right)\) \(e\left(\frac{11}{23}\right)\)
\(\chi_{40310}(17459,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{29}{46}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{5}{46}\right)\) \(e\left(\frac{15}{46}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{9}{23}\right)\)
\(\chi_{40310}(22389,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{23}\right)\) \(e\left(\frac{1}{46}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{39}{46}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{21}{46}\right)\) \(e\left(\frac{17}{46}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{1}{23}\right)\)
\(\chi_{40310}(24129,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{21}{46}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{37}{46}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{27}{46}\right)\) \(e\left(\frac{35}{46}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{21}{23}\right)\)
\(\chi_{40310}(24419,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{17}{46}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{19}{46}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{35}{46}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{17}{23}\right)\)
\(\chi_{40310}(26159,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{3}{46}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{17}{23}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{17}{46}\right)\) \(e\left(\frac{5}{46}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{3}{23}\right)\)
\(\chi_{40310}(26449,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{19}{46}\right)\) \(e\left(\frac{11}{46}\right)\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{2}{23}\right)\)
\(\chi_{40310}(27319,\cdot)\) \(-1\) \(1\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{31}{46}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{7}{46}\right)\) \(e\left(\frac{21}{46}\right)\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{8}{23}\right)\)
\(\chi_{40310}(27609,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{19}{46}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{8}{23}\right)\) \(e\left(\frac{5}{46}\right)\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{31}{46}\right)\) \(e\left(\frac{1}{46}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{19}{23}\right)\)
\(\chi_{40310}(29059,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{27}{46}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{15}{46}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{4}{23}\right)\)
\(\chi_{40310}(35439,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{33}{46}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{3}{46}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{10}{23}\right)\)
\(\chi_{40310}(39499,\cdot)\) \(-1\) \(1\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{1}{46}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{43}{46}\right)\) \(e\left(\frac{37}{46}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{13}{23}\right)\)