Properties

Label 40310.9
Modulus $40310$
Conductor $20155$
Order $966$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(966)) M = H._module chi = DirichletCharacter(H, M([483,345,574]))
 
Copy content pari:[g,chi] = znchar(Mod(9,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(966\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20155}(9,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40310.fn

\(\chi_{40310}(9,\cdot)\) \(\chi_{40310}(399,\cdot)\) \(\chi_{40310}(1019,\cdot)\) \(\chi_{40310}(1289,\cdot)\) \(\chi_{40310}(1369,\cdot)\) \(\chi_{40310}(1459,\cdot)\) \(\chi_{40310}(1559,\cdot)\) \(\chi_{40310}(1749,\cdot)\) \(\chi_{40310}(2139,\cdot)\) \(\chi_{40310}(2209,\cdot)\) \(\chi_{40310}(2429,\cdot)\) \(\chi_{40310}(2449,\cdot)\) \(\chi_{40310}(2499,\cdot)\) \(\chi_{40310}(2619,\cdot)\) \(\chi_{40310}(2719,\cdot)\) \(\chi_{40310}(2759,\cdot)\) \(\chi_{40310}(2789,\cdot)\) \(\chi_{40310}(3109,\cdot)\) \(\chi_{40310}(3319,\cdot)\) \(\chi_{40310}(3899,\cdot)\) \(\chi_{40310}(4069,\cdot)\) \(\chi_{40310}(4239,\cdot)\) \(\chi_{40310}(4269,\cdot)\) \(\chi_{40310}(4459,\cdot)\) \(\chi_{40310}(4479,\cdot)\) \(\chi_{40310}(4499,\cdot)\) \(\chi_{40310}(4529,\cdot)\) \(\chi_{40310}(5039,\cdot)\) \(\chi_{40310}(5229,\cdot)\) \(\chi_{40310}(5329,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{483})$
Fixed field: Number field defined by a degree 966 polynomial (not computed)

Values on generators

\((24187,19461,16821)\) → \((-1,e\left(\frac{5}{14}\right),e\left(\frac{41}{69}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(9, a) \) \(1\)\(1\)\(e\left(\frac{313}{483}\right)\)\(e\left(\frac{479}{966}\right)\)\(e\left(\frac{143}{483}\right)\)\(e\left(\frac{85}{966}\right)\)\(e\left(\frac{925}{966}\right)\)\(e\left(\frac{40}{69}\right)\)\(e\left(\frac{445}{966}\right)\)\(e\left(\frac{139}{966}\right)\)\(e\left(\frac{221}{322}\right)\)\(e\left(\frac{152}{161}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(9,a) \;\) at \(\;a = \) e.g. 2