Properties

Label 40310.79
Modulus $40310$
Conductor $20155$
Order $644$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(644)) M = H._module chi = DirichletCharacter(H, M([322,391,280]))
 
Copy content pari:[g,chi] = znchar(Mod(79,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(644\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20155}(79,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40310.fb

\(\chi_{40310}(79,\cdot)\) \(\chi_{40310}(369,\cdot)\) \(\chi_{40310}(409,\cdot)\) \(\chi_{40310}(619,\cdot)\) \(\chi_{40310}(739,\cdot)\) \(\chi_{40310}(889,\cdot)\) \(\chi_{40310}(959,\cdot)\) \(\chi_{40310}(1469,\cdot)\) \(\chi_{40310}(1519,\cdot)\) \(\chi_{40310}(1609,\cdot)\) \(\chi_{40310}(1759,\cdot)\) \(\chi_{40310}(1859,\cdot)\) \(\chi_{40310}(2009,\cdot)\) \(\chi_{40310}(2119,\cdot)\) \(\chi_{40310}(2149,\cdot)\) \(\chi_{40310}(2289,\cdot)\) \(\chi_{40310}(2399,\cdot)\) \(\chi_{40310}(2479,\cdot)\) \(\chi_{40310}(2579,\cdot)\) \(\chi_{40310}(3019,\cdot)\) \(\chi_{40310}(3309,\cdot)\) \(\chi_{40310}(3519,\cdot)\) \(\chi_{40310}(3669,\cdot)\) \(\chi_{40310}(3739,\cdot)\) \(\chi_{40310}(3759,\cdot)\) \(\chi_{40310}(3789,\cdot)\) \(\chi_{40310}(3859,\cdot)\) \(\chi_{40310}(4249,\cdot)\) \(\chi_{40310}(4389,\cdot)\) \(\chi_{40310}(4539,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{644})$
Fixed field: Number field defined by a degree 644 polynomial (not computed)

Values on generators

\((24187,19461,16821)\) → \((-1,e\left(\frac{17}{28}\right),e\left(\frac{10}{23}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(79, a) \) \(-1\)\(1\)\(e\left(\frac{233}{644}\right)\)\(e\left(\frac{169}{322}\right)\)\(e\left(\frac{233}{322}\right)\)\(e\left(\frac{143}{644}\right)\)\(e\left(\frac{41}{161}\right)\)\(e\left(\frac{71}{92}\right)\)\(e\left(\frac{635}{644}\right)\)\(e\left(\frac{571}{644}\right)\)\(e\left(\frac{123}{322}\right)\)\(e\left(\frac{55}{644}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(79,a) \;\) at \(\;a = \) e.g. 2