Properties

Label 40310.77
Modulus $40310$
Conductor $20155$
Order $644$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(644)) M = H._module chi = DirichletCharacter(H, M([161,207,588]))
 
Copy content pari:[g,chi] = znchar(Mod(77,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(644\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20155}(77,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40310.ez

\(\chi_{40310}(77,\cdot)\) \(\chi_{40310}(403,\cdot)\) \(\chi_{40310}(453,\cdot)\) \(\chi_{40310}(1007,\cdot)\) \(\chi_{40310}(1017,\cdot)\) \(\chi_{40310}(1237,\cdot)\) \(\chi_{40310}(1287,\cdot)\) \(\chi_{40310}(1303,\cdot)\) \(\chi_{40310}(1563,\cdot)\) \(\chi_{40310}(1593,\cdot)\) \(\chi_{40310}(1813,\cdot)\) \(\chi_{40310}(1887,\cdot)\) \(\chi_{40310}(2397,\cdot)\) \(\chi_{40310}(2463,\cdot)\) \(\chi_{40310}(2747,\cdot)\) \(\chi_{40310}(2753,\cdot)\) \(\chi_{40310}(2757,\cdot)\) \(\chi_{40310}(3113,\cdot)\) \(\chi_{40310}(3303,\cdot)\) \(\chi_{40310}(3693,\cdot)\) \(\chi_{40310}(3947,\cdot)\) \(\chi_{40310}(3983,\cdot)\) \(\chi_{40310}(4137,\cdot)\) \(\chi_{40310}(4493,\cdot)\) \(\chi_{40310}(4503,\cdot)\) \(\chi_{40310}(4513,\cdot)\) \(\chi_{40310}(4527,\cdot)\) \(\chi_{40310}(4783,\cdot)\) \(\chi_{40310}(4803,\cdot)\) \(\chi_{40310}(4817,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{644})$
Fixed field: Number field defined by a degree 644 polynomial (not computed)

Values on generators

\((24187,19461,16821)\) → \((i,e\left(\frac{9}{28}\right),e\left(\frac{21}{23}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(77, a) \) \(1\)\(1\)\(e\left(\frac{255}{322}\right)\)\(e\left(\frac{489}{644}\right)\)\(e\left(\frac{94}{161}\right)\)\(e\left(\frac{275}{644}\right)\)\(e\left(\frac{625}{644}\right)\)\(e\left(\frac{16}{23}\right)\)\(e\left(\frac{57}{644}\right)\)\(e\left(\frac{355}{644}\right)\)\(e\left(\frac{535}{644}\right)\)\(e\left(\frac{121}{322}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(77,a) \;\) at \(\;a = \) e.g. 2