Properties

Label 40310.57
Modulus $40310$
Conductor $20155$
Order $92$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40310, base_ring=CyclotomicField(92)) M = H._module chi = DirichletCharacter(H, M([23,46,68]))
 
Copy content pari:[g,chi] = znchar(Mod(57,40310))
 

Basic properties

Modulus: \(40310\)
Conductor: \(20155\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(92\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{20155}(57,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40310.dr

\(\chi_{40310}(57,\cdot)\) \(\chi_{40310}(173,\cdot)\) \(\chi_{40310}(1797,\cdot)\) \(\chi_{40310}(1913,\cdot)\) \(\chi_{40310}(4233,\cdot)\) \(\chi_{40310}(6727,\cdot)\) \(\chi_{40310}(7133,\cdot)\) \(\chi_{40310}(7307,\cdot)\) \(\chi_{40310}(7597,\cdot)\) \(\chi_{40310}(8003,\cdot)\) \(\chi_{40310}(8873,\cdot)\) \(\chi_{40310}(9627,\cdot)\) \(\chi_{40310}(12933,\cdot)\) \(\chi_{40310}(13687,\cdot)\) \(\chi_{40310}(13977,\cdot)\) \(\chi_{40310}(15137,\cdot)\) \(\chi_{40310}(16297,\cdot)\) \(\chi_{40310}(18037,\cdot)\) \(\chi_{40310}(19313,\cdot)\) \(\chi_{40310}(20357,\cdot)\) \(\chi_{40310}(20763,\cdot)\) \(\chi_{40310}(21053,\cdot)\) \(\chi_{40310}(21923,\cdot)\) \(\chi_{40310}(22213,\cdot)\) \(\chi_{40310}(23257,\cdot)\) \(\chi_{40310}(23953,\cdot)\) \(\chi_{40310}(24127,\cdot)\) \(\chi_{40310}(24243,\cdot)\) \(\chi_{40310}(24997,\cdot)\) \(\chi_{40310}(25983,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{92})$
Fixed field: Number field defined by a degree 92 polynomial

Values on generators

\((24187,19461,16821)\) → \((i,-1,e\left(\frac{17}{23}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 40310 }(57, a) \) \(-1\)\(1\)\(e\left(\frac{51}{92}\right)\)\(e\left(\frac{19}{92}\right)\)\(e\left(\frac{5}{46}\right)\)\(e\left(\frac{31}{46}\right)\)\(e\left(\frac{5}{92}\right)\)\(e\left(\frac{77}{92}\right)\)\(e\left(\frac{2}{23}\right)\)\(e\left(\frac{35}{46}\right)\)\(e\left(\frac{65}{92}\right)\)\(e\left(\frac{61}{92}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40310 }(57,a) \;\) at \(\;a = \) e.g. 2